Physics, asked by nikhithanaidu63, 6 months ago

A ball is thrown with 5m/s at angle of projection 37 degrees . Find time of flight, maximum height , range?​

Answers

Answered by junaid221
5

Explanation:

time of flight=5xsin37⁰/g(10)

max height=5²x sin²37⁰/2g

Range=5xsin2x37⁰/g

just put the values and solve bro

Answered by nirman95
9

Given:

A ball is thrown with 5m/s at angle of projection 37°.

To find:

  • Time of flight
  • Maximum height
  • Range

Calculation:

  • Please remember the following FORMULAS for projectiles.

 1) \: t =  \dfrac{2u \sin( \theta) }{g}

  \implies \: t =  \dfrac{2 \times 5 \sin(  {37}^{ \circ} ) }{10}

  \implies \: t =  \dfrac{2 \times 5  \times  \frac{3}{5} }{10}

  \implies \: t = 0.6 \: sec

So, time of projectile is 0.6 seconds.

Now, max height be h :

h =  \dfrac{ {u}^{2} { \sin}^{2}( \theta)  }{2g}

 \implies h =  \dfrac{ {5}^{2} \times  { \sin}^{2}(  {37}^{ \circ} )  }{2 \times 10}

 \implies h =  \dfrac{25 \times   \frac{9}{25}  }{2 \times 10}

 \implies h =  \dfrac{9}{20}

 \implies h =0.45 \: m

So, max height is 0.45 metres.

Now, let range be R :

R =  \dfrac{ {u}^{2}  \sin(2  \theta) }{g}

 \implies R =  \dfrac{ {5}^{2}  \times  2\sin( \theta)  \cos( \theta) }{10}

 \implies R =  \dfrac{ {5}^{2}  \times  2\sin( {37}^{ \circ} )  \cos(  {37}^{ \circ} ) }{10}

 \implies R =  \dfrac{ {5}^{2}  \times  2 \times  \frac{3}{5}  \times  \frac{4}{5}  }{10}

 \implies R =  \dfrac{24 }{10}

 \implies R = 2.4 \: m

So, range is 2.4 metres.

Similar questions