Physics, asked by khosahmed123, 7 months ago

a ball is thrown with speed pf 30 in direction 30* above the horizon what is the height to which it rises

Answers

Answered by RISH4BH
82

\large{\underline{\underline{\red{\sf{\hookrightarrow Given:- }}}}}

\sf{A \:body \:is\: thrown\: with \:a\: velocity \:of 30m/s.}

\sf It \:is \:projected \:at \:an \:angle\: of\: 30^{\circ} .

\large{\underline{\underline{\red{\sf{\hookrightarrow To\:Find:- }}}}}

\sf The \:maximum \:height\: achieved \:by \:body.

\large{\underline{\underline{\red{\sf{\hookrightarrow Formula \:Used:- }}}}}

\sf When \:a \:body \:when \:thrown\: vertically

\sf upward \:with \:some \:angle \:and \:velocity

\sf it\: possess\: a \:projectile\: motion\: , then\: \sf maximum\: height \:reached\: is\: given \:by\: ,

\large\purple{\underline{\boxed{\pink{\sf{\dag Max^m\:height=\dfrac{u^2\:\sin^2\theta}{2g}}}}}}

\sf where \:\bf{u }\:is \:velocity\: by\: which\: it\: is \:projected.

\large{\underline{\underline{\red{\sf{ \hookrightarrow Calculation:-}}}}}

\sf Here ,

\green{\bigstar}\orange{\tt Velocity\:of\: projection\:=\:30m/s }

\orange{\bigstar}\green{\tt Angle\:of\: projection\:=\:30^{\circ} }

\tt\mapsto Now\:put\:the\:values\:in\:above\:stated\: formula:-

\tt :\implies H_{max}=\dfrac{u^2\:sin^2\theta}{2g}

\tt :\implies H_{max}= \dfrac{(30ms^{-1})^2\times\sin^230^{\circ}}{2\times10ms^{-2}}

\tt :\implies H_{max}=\dfrac{30ms^{-1}\times30ms^{-1}\times\bigg(\dfrac{1}{2}\bigg)^2}{20ms^{-2}}

\tt :\implies H_{max}=\dfrac{\cancel{30ms^{-1}}\times\cancel{30ms^{-1}}\times1}{\cancel{4}\times\cancel{20ms^{-2}}}

\tt:\implies H_{max}=\dfrac{22.5m}{2}

\underline{\boxed{\red{\tt{\longmapsto H_{max}\:\:\:\:=\:\:\:\:11.25m}}}}

\green{\boxed{\pink{\bf{\leadsto Hence\:the\: maximum\: Height\: attained\:is\:11.25m.}}}}

Similar questions
Math, 3 months ago