Physics, asked by shaurya9964, 9 months ago

A ball of mass 5 kg experiences a force of 2x2 +x work done by the ball to displace 2m is

Answers

Answered by Anonymous
5

GiveN :

  • Mass of ball (m) = 5 kg
  • Force (F) = 2x² + x
  • Ball is displaced from 0m to 2m

To FinD :

  • Work Done by ball to displaced

SolutioN :

As we know that,

\longrightarrow \boxed{\sf{W\ =\ \int F .dx}}

Where,

  • F is Force
  • W is work done
  • dx is the displacement
  • And limit lies between 0 to 2

\displaystyle \longrightarrow \sf{W\ =\ \int _0 ^2 (2x^2 \: + \: x)dx} \\ \\ \longrightarrow \sf{W \: = \: \bigg[ \dfrac{2x^3}{3} \: + \: \dfrac{x^2}{2} \bigg]_0 ^2 } \\ \\ \longrightarrow \sf{W \: = \: \bigg[ \bigg( \dfrac{2 \: \times \: 2^3}{3} \bigg) \: + \: \bigg( \dfrac{2^2}{2} \bigg) \bigg] \: - \: \bigg[ \dfrac{2 \: \times \: 0^3}{3} \: + \: \dfrac{0^2}{2} \bigg] } \\ \\ \longrightarrow \sf{W \: = \: \bigg( \dfrac{2 \: \times \: 8}{3} \: + \: \dfrac{4}{2} \bigg) - \: 0 } \\ \\ \longrightarrow \sf{W \: = \: \dfrac{16}{3} \: + \: 2} \\ \\ \longrightarrow \sf{W \: = \: \dfrac{16 \: + \: 6}{3}} \\ \\ \longrightarrow \sf{W \: = \: \dfrac{22}{3}} \\ \\ \underline{\sf{\therefore \: Work\ done\ by\ ball\ is\ \dfrac{22}{3}\ J}}


Anonymous: Nice
Similar questions