A ball of mass is released from a point A where, is 53°. Length of pendulum is . Find and at
a. point A
b. point B
c. point P, where is 37°
Answers
Q]___?
Solution-
POINT A :
=> v = 0
=> ar = v^2 / r = 0
=> at = g sinθo ...[ θo = 53° ]
= g sin 53°
= 4/5 g
anet = √[ ( ar)^2 + ( at )^2]
anet = √0t + (4/5 g )^2
anet = 4/5 g
• T = 0
• Fnet = mnet = 4/5 mg
Point B :
h = l - l cos 53°
h = l [ 1- ( 3/5) ] = 2/5 l
v^2 - u^2 = 2gh
...[ Substituting the values ]
v^2 - 0 = l × g × 2/5 l
v = √4/5 gl
=>ar = v^2 / r = (√ 4/5 gl )^2 / l = 4/5g
=>at = 0 ...[no tangential acceleration ]
=>a = √ ar^2 + at^2
=>a = √ ar^2 + 0 = ar
=>a = 4/5 g
=>T - mg = mv^2 / r
=>T - mg = [ m ( √4/5 gl )^2 ] / l
=>T = 9/5 mg
•Fnet = m × a
•Fnet = 4/5 mg
Point C :
Consider MN height down !
h = ON - OM
...[given : ON = l cos37° & OM = l cos 53°]
h = 4/5 l - 3/5 l
h = l/5
v^2- u^2 = 2gh
v^2 - 0 = 2 × g × h ...[ h = l/5]
v^2 - 0 = 2 × g × l/5
v = √2/5 gl
• ar = v^2 /r = [ (√2/5 gl )^2]/ l = 2/5 g
=> at = gsinθ = g sin 37°
=> at = 3/5 g
•a = √ ar^2 + at^2
•a = √[ (2/5 g )^2 + ( 3/5 g^2) ]
•a = √13/5 g
T - mg cos37° - mv^2 / r
T - mg ( 4/5) = m × (√2/5 gl )^2 /l
T = 6/5 mg
•Fnet = m a = m × √13/5 g
•Fnet = √13/5 mg
______________________________________
Answer:
Q]___?
Solution-
POINT A :
=> v = 0
=> ar = v^2 / r = 0
=> at = g sinθo ...[ θo = 53° ]
= g sin 53°
= 4/5 g
anet = √[ ( ar)^2 + ( at )^2]
anet = √0t + (4/5 g )^2
anet = 4/5 g
• T = 0
• Fnet = mnet = 4/5 mg
Point B :
h = l - l cos 53°
h = l [ 1- ( 3/5) ] = 2/5 l
v^2 - u^2 = 2gh
...[ Substituting the values ]
v^2 - 0 = l × g × 2/5 l
v = √4/5 gl
=>ar = v^2 / r = (√ 4/5 gl )^2 / l = 4/5g
=>at = 0 ...[no tangential acceleration ]
=>a = √ ar^2 + at^2
=>a = √ ar^2 + 0 = ar
=>a = 4/5 g
=>T - mg = mv^2 / r
=>T - mg = [ m ( √4/5 gl )^2 ] / l
=>T = 9/5 mg
•Fnet = m × a
•Fnet = 4/5 mg
Point C :
Consider MN height down !
h = ON - OM
...[given : ON = l cos37° & OM = l cos 53°]
h = 4/5 l - 3/5 l
h = l/5
v^2- u^2 = 2gh
v^2 - 0 = 2 × g × h ...[ h = l/5]
v^2 - 0 = 2 × g × l/5
v = √2/5 gl
• ar = v^2 /r = [ (√2/5 gl )^2]/ l = 2/5 g
=> at = gsinθ = g sin 37°
=> at = 3/5 g
•a = √ ar^2 + at^2
•a = √[ (2/5 g )^2 + ( 3/5 g^2) ]
•a = √13/5 g
T - mg cos37° - mv^2 / r
T - mg ( 4/5) = m × (√2/5 gl )^2 /l
T = 6/5 mg
•Fnet = m a = m × √13/5 g
•Fnet = √13/5 mg
______________________________________
Please brainlest me the answer