Physics, asked by khaninshirah4, 18 days ago

A ball projected horizontally with speed v from top of a tower of height h reaches the ground at distance R from the foot of the tower .Another ball projected horizontally from the top of atower of height 2h ,reaches the ground at a distance 2R from the foot of the tower what is the initial speed of the second ball

Answers

Answered by DeeznutzUwU
0

        \text{\huge{\bf{Answer:}}}

        \text{Case I:}

        \text{Initial velocity} = v

        \text{Height} = h

        \text{Range} = R

        \text{We know that time taken to reach the ground for horizontal projectile is}

        T = \sqrt{\dfrac{2h}{g}}

\implies \; T_1 = \sqrt{\dfrac{2h}{g}}

        \text{Using Distance} =\text{Speed} \times \text{Time}

\implies \; R = vT_1

\implies \; R = v\sqrt{\dfrac{2h}{g}} \text{ ------ (i)}

        \text{Case II:}

        \text{Height} = 2h

        \text{Range} = 2R

\implies \; T_2 = \sqrt{\dfrac{4h}{g}}

\implies \; 2R = VT_2

\implies 2R = V\sqrt{\dfrac{4h}{g}} \text{ ------ (ii)}

        \text{Diving (i) by (ii)}

\implies \; \dfrac{R}{2R} = \dfrac{v\sqrt{\dfrac{2h}{g}}}{V\sqrt{\dfrac{4h}{g}}}

\implies \; \dfrac{1}{2} = \dfrac{v}{V\sqrt2}

\implies \; \dfrac{1}{\sqrt2} = \dfrac{v}{V}

\implies \; \boxed{V = \sqrt2v}

Similar questions