Physics, asked by nisshabi6932, 10 months ago

A ball travelling in straight line with initial velocity 49m/s and acceleration -10 m/s find dost travelled in 5 Th second

Answers

Answered by ShivamKashyap08
8

\huge{\bold{\underline{\underline{\tt Correct\:  question:-}}}}

A ball travelling in straight line with initial velocity 49m/s and acceleration -10 m/s find distance travelled in 5 th second?.

\huge{\bold{\underline{\underline{....Answer....}}}}

\huge{\bold{\underline{Given:-}}}

  • Initial velocity (u) = 49 m/s.
  • Acceleration (a) = - 10 m/s².
  • Time taken (t) = 5 seconds.

\huge{\bold{\underline{Explanation:-}}}

\rule{300}{1.5}

By applying second kinematic equation,

\large{\boxed{\tt S = ut + \dfrac{1}{2}at^2}}

Substituting the values,

\large{\tt S = 49 \times 5 + \dfrac{1}{2} \times- 10 \times (5)^2}

\large{\tt S = 245 - \dfrac{1}{2} \times 10 \times 25}

\large{\tt S = 245 - \dfrac{1}{\cancel{2}} \times \cancel{10} \times 25}

Now,

\large{\tt S = 245 - 5 \times 25}

\large{\tt S = 245 - 125}

\huge{\boxed{\boxed{\tt S = 120 \: meters}}}

\rule{300}{1.5}

\rule{300}{1.5}

Additional formulas:-

  • \large{\tt v^2 - u^2 = 2as}
  • \large{\tt v = u + at}
  • \large{\tt S = ut + \dfrac{1}{2}at^2}

  • \large{\tt S_n = u + \dfrac{a}{2}(2n - 1)}

\rule{300}{1.5}

Answered by ItSdHrUvSiNgH
4

Explanation:

Helloo..... \\ Here \: given \: that =  >  \\ u = Initial \: velocity = 49m {s}^{ - 1}  \\ a = Acceleration =  - 10m {s}^{ - 1}  \\ here \:  - ve \: sign \: shows \: that \: it \:  \\ has \: been \: retarded..... \\ To \: find = Distance \: travelled \: in \: 5th \: second. \\  \\ by \: newtons \: second \: law =  >  \\  \\ S = ut +  \frac{1}{2} a {t}^{2}  \\ S = 49(5) +  \frac{1}{2} ( - 10)( {5})^{2}  \\ S = 245  - 5(25) \\ S = 245 - 125 \\ S = 120 \: m \\  \\  \\ Hope \: it \: solution \: is \: clear

Similar questions