Physics, asked by kritika1412, 7 months ago

A baloon rising vertically......................................ball hit the ground​

Attachments:

Answers

Answered by ritanjaliroutray476
1

Answer :

Time = 6.2 s

Height = 193 m

Explanation :

Q) A balloon rising vertically up with unitrom velcity releases a ball at a deight of . Calculate the time taken by the ball to hit the ground and total height of balloon when ball hits the ground. Take g=10 m s^2

Ans ) Time = 6.2 s

Height = 193 m.

I have attached a picture with the answer where is the whole solution is given step-by-step. pls go through that. hope it helps u dear. pls mark as Brain list.

Attachments:
Answered by BrainlyConqueror0901
5

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{t =  \frac{3  +  \sqrt{89}  }{2}  \: sec}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

\green{\bold{\underline{Given :}}}

\tt:  \implies Upward \: velocity(u) =  {15 \: m/s}

\tt:  \implies height(s ) = 100 \: m

\tt:  \implies Acceleration \: due \: to \: gravity(g) =  10 \:  {m/s}^{2}

 \red{\bold{\underline{To \: Find:}}}

 \tt:  \implies Time \: taken(t) = ?

• According to given question :

 \tt \circ \:Initial \: velocity =  - 15 { \: m/s}

\bold{As \: we \: know \: that}

 \tt:  \implies s = ut +  \frac{1}{2} a {t}^{2}  \\

\tt:  \implies 100 =  - 15 \times t +  \frac{1}{2}  \times  {10 \times t}^{2}\\

\tt:  \implies 100 =  - 15t + 5 {t}^{2}

\tt:  \implies 5 {t}^{2}  - 15t - 100 = 0

 \tt:  \implies  {t}^{2}  - 3t - 20 = 0

\tt:  \implies t =  \frac{ - ( - 3) \pm \sqrt{ { (- 3)}^{2}  - 4 \times 1 \times  - 20} }{2 \times 1}\\

\tt:  \implies t =  \frac{3 \pm \sqrt{89} }{2}\\

 \green{\tt:  \implies t =  \frac{3  +  \sqrt{89}  }{2}  \: sec}\\

Similar questions