Physics, asked by shivM1890, 10 months ago

A bar magnet of length 1 cm and cross-sectional area 1.0 cm2 produces a magnetic field of 1.5 × 10−4 T at a point in end-on position at a distance 15 cm away from the centre. (a) Find the magnetic moment M of the magnet. (b) Find the magnetisation I of the magnet. (c) Find the magnetic field B at the centre of the magnet.

Answers

Answered by sitaramrathod237
1

Answer:

:

Explanation:

i hope this is correct answer ✔✔✔✔✔

Attachments:
Answered by bhuvna789456
1

(a) The magnetic moment M of the magnet is 2.5 \mathrm{A}

(b) The magnetisation I of the magnet is  2.5 \times 10^{6} \frac{A}{m}

(c) The magnetic field B at the centre of the magnet is 3.14 T

Explanation:

(a)The magnetic moment M of the magnet:

Step 1:

Observation point distance from the bar magnet core, d = 15 cm = 0.15 m

Bar magnet longitude, l = 1 cm = 0.01 m

Cross-section area of magnet bar, A = 1.0 cm^{2} = 1 \times 10^{-4} \mathrm{m}^{-2}

Bar magnet's strength in magnetic field, B = 1.5 × 10−4 T

Step 2:

Since the point of observation is in the end-on position, the magnetic field is

\vec{B}=\frac{\mu_{0}}{4 \pi} \times \frac{2 M d}{\left(d^{2}-l^{2}\right)^{2}}

Step 3:

When the respective values are replaced we get:

1.5 \times 10^{-4}=10^{-7} \times 2 \times M \times \frac{0.15}{\left(0.15^{2}-0.01^{2}\right)^{2}}

1.5 \times 10^{-4}=10^{-7} \times 2 \times M \times \frac{0.15}{(0.0225-0.0001)^{2}}

1.5 \times 10^{-4}=3 \times 10^{-8} \times \frac{M}{\left(5.01 \times 10^{-4}\right)}  

           M=1.5 \times 10^{-4} \times 5.01 \times \frac{10^{-4}}{\left(3 \times 10^{-8}\right)}

                = 2.5 A

(b)The magnetisation I of the magnet :

The magnetisation intensity I is given by,

\mathrm{I}=\frac{M}{V}

 =\frac{2.5}{\left(10^{-4} \times 10^{-2}\right)}

 =2.5 \times 10^{6} \frac{A}{m}

(c)  The magnetic field B at the centre of the magnet:

H=\frac{M}{4 \pi l d^{2}}

   =\frac{2.5}{4 \times 3.14 \times 0.01 \times(0.15)^{2}}

  =\frac{2.5}{4 \times 3.14 \times 1 \times 10^{-2} \times 2.25 \times 10^{-2}}

\text { Net } H=H_{N}+H_{S}

= 884.6 = 8.846 × 〖10〗^2

= 314 T

\vec{B}=m \mu_{0}(H+1)

\begin{aligned}&=\pi \times 10^{-7}\left(2.5 \times 10^{6}+2 \times 884.6\right)\\&=3.14 T\end{aligned}

Similar questions