Physics, asked by vrushali0311, 4 months ago

A bar of cross section area 200 mm² is axially pulled by a force P kN. If maximum stress induced in the bar is 30 MPa, determine P if elongation of 1.2 mm is observed over a guage length 3 m. Determine youngs modulus.​

Answers

Answered by Anonymous
13

 \large \underline \bold{Given}:-

\sf Cross \: section \: Area \: = \: 200 \: mm^{2} \: = \: 200\times 10^{-6} \: m^{2}

\: \: \: \: \: \: \sf pulling \: force \: = \: P \: kN \: = \: P\times 10^{3} \: N

\: \: \: \: \: \: \sf maximum \: stress \: = \: 30 \: MPa \: = \: 30\times 10^{6} \: Pa

\: \: \: \: \: \: \sf length \: of \: bar \: = \: 3 \: m

\sf elongation \: in \: length \: = \: 1.2 \: mm \: = \: 1.2\times 10^{-3} \: m

 \large \underline \bold{To \: Find}:-

\sf determine \: \: P \: \: and \: \: also \: \: young \: \: modulus \: ?

 \large \underline \bold{Usable \: Formula}:-

1) \qquad\qquad\large\boxed{\sf\pink{P \: = \: \dfrac{F}{A}}}

2) \qquad\qquad\large\boxed{\sf\pink{\gamma \: = \: \dfrac{\sigma}{\epsilon}}}

\sf where-

\qquad\sf F \: = \: pulling \: force

\qquad\sf P \: = \: inducing \: stress

\qquad\sf A \: = \: Cross \: Section \: Area

\qquad\sf \gamma \: = \: young \: \: modulus

\qquad\sf \sigma \: = \: longitudinal \: \: stress

\qquad\sf \epsilon \: = \: longitudinal \: \: de \: formity

 \large \underline \bold{Solution}:-

\sf On \: using \: the \: above \: formula-

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \sf F \: = \: PA

\: \: \: \: \: \: \: \: \sf (P\times 10^{3}) \: = \: (30\times 10^{6})\times (2\times 10^{-4})

\: \: \: \: \: \: \sf (P\times 10^{3}) \: = \: (3\times 10^{7})\times (2\times 10^{-4})

\: \: \: \: \: \sf (P\times \cancel{10^{3}}) \: = \: (6\times \cancel{10^{3}})

\: \: \: \: \: \: \: \: \: \: \: \large\boxed{\sf\pink{P \: = \: 6}}

\sf So,

\qquad\sf F \: = \: 6\times 10^{3} \: N

\sf Now -

\qquad\sf \gamma \: = \: \dfrac{(\dfrac{F}{A})}{(\dfrac{\delta L}{L})}

\qquad\sf \gamma \: = \: \dfrac{FL}{A \: \delta L}

\: \: \: \: \: \: \: \: \: \sf \gamma \: = \: \dfrac{(\cancel{6}\times 10^{3})\times 3}{(\cancel{2}\times 10^{-4})\times (1.2\times 10^{-3})}

\qquad\sf \gamma \: = \: \dfrac{(3\times 10^{3})\times 3}{1.2\times 10^{-7}}

\qquad\sf \gamma \: = \: \dfrac{9\times 10^{3}}{1.2\times 10^{-7}}

\qquad\sf \gamma \: = \: \dfrac{3\times 10^{3}}{0.4\times 10^{-7}}

\qquad\sf \gamma \: = \: \dfrac{30\times 10^{3+7}}{4}

\qquad\sf \gamma \: = \: \dfrac{15\times 10^{10}}{2}

\: \: \: \: \: \: \large\boxed{\sf\pink{\gamma \: = \: 7.5\times 10^{10} \: N/m^{2}}}

Answered by SɴᴏᴡʏSᴇᴄʀᴇᴛ
3

▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅

⠀⠀⠀⠀⠀\Large{\boxed{\underline{\overline{\mathfrak{\star \: AnSwer :- \: \star}}}}}

\large\underline{\tt{\red{ Formula}}}

 \large{\tt\orange{P \: = \: \dfrac{F}{A}}}

\large{\tt\orange{\gamma \: = \: \dfrac{\sigma}{\epsilon}}}

\tt where

\tt F \: = \: pulling \: force

 \tt P \: = \: inducing \: stress

\tt A \: = \: Cross \: Section \: Area

\tt \gamma \: = \: young \: \: modulus

\tt \sigma \: = \: longitudinal \: \: stress

\tt \epsilon \: = \: longitudinal \: \: de \: formity

\large \underline{\tt{\red{Solution}}}

 \tt F \: = \: PA

\implies \tt (P\times 10^{3}) \: = \: (30\times 10^{6})\times (2\times 10^{-4})

\implies \tt (P\times 10^{3}) \: = \: (3\times 10^{7})\times (2\times 10^{-4})

\implies \tt (P\times \cancel{10^{3}}) \: = \: (6\times \cancel{10^{3}})

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀\large\boxed{\tt\red{P \: = \: 6}}

\tt So,

\qquad \tt F \: = \: 6\times 10^{3} \: N

Now−

\tt \gamma \: = \: \dfrac{(\dfrac{F}{A})}{(\dfrac{\delta L}{L})}

\implies \tt \gamma \: = \: \dfrac{FL}{A \: \delta L}

 \tt \gamma \: = \: \dfrac{(\cancel{6}\times 10^{3})\times 3}{(\cancel{2}\times 10^{-4})\times (1.2\times 10^{-3})}

\implies \tt \gamma \: = \: \dfrac{(3\times 10^{3})\times 3}{1.2\times 10^{-7}}

\implies \tt \gamma \: = \: \dfrac{9\times 10^{3}}{1.2\times 10^{-7}}

\implies \tt \gamma \: = \: \dfrac{3\times 10^{3}}{0.4\times 10^{-7}}

\implies \tt \gamma \: = \: \dfrac{30\times 10^{3+7}}{4}

\implies \tt \gamma \: = \: \dfrac{15\times 10^{10}}{2}

\qquad \qquad \large\underline{\tt\red{\gamma \: = \: 7.5\times 10^{10} \: N/m^{2}}}

▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅▅

Similar questions