A bar of steel is 60 mm x 60 mm in section and 180 mm long. It is subjected to a tensile load of 300 kN along the longitudinal axis and tensile loads of 750 kN and 600 kN on the lateral faces. Find the change in the dimensions of the bar and the change in volume. Take: E = 200 GN/m2 , and 1/m = 0.3.
Answers
Answer:
The stresses in the direction of X, Y and Z axes,
Along X-axes, Px=FxA=320∗10360∗60(N/mm∗mm)=88.89N/mm2
Along Y axis, Py=FyA=760∗103180∗60(N/mm∗mm)=70.37N/mm2
Along Z axis, Pz=FzA=600∗103180∗60(N/mm∗mm)=55.56N/mm2
Now, the strain along the three principal directions are, due to stresses, Px,Py,Pz,
ex=PxE−μPYE−μPzE
ex=88.89200∗103−0.3∗70.37200∗103− 0.3∗55.56200∗103=0.000256
Now,
ey=PyE−μPzE−μPxE
ey=70.37200∗103−0.3∗55.56200∗103− 0.3∗88.89200∗103=0.000135
ez=PzE−μPxE−μPyE
ez=55.56200∗103−0.3∗88.89200∗103− 0.3∗70.37200∗103=0.00039
Volumetric sign=ex+ey+ez
=0.000256+0.000135+0.00039
ev=0.000781
Also, volumetricstrain=changeinvolumeoriginalvolume
0.000781=changeinvolume180∗60∗60
Changeinvolume=506.088mm3
Now,ex=DeltaLL
0.000256=Δ180
ΔL=0.046mm
ey=DeltaWW
0.000135=ΔW60