Math, asked by sarlamalik5497, 1 year ago

A basket contains fruits weighing 58/3 in all. If 73/9 kg of these be apples 19/6 kg be oranges and the rest years what is the weight of the pears in the basket

Answers

Answered by LovelyG
36

Answer:

\large{\underline{\boxed{\sf Weight \: of \: pears = \dfrac{145}{18}}}}

Step-by-step explanation:

Given that ;

Total weight of fruits = \sf \dfrac{58}{3 }

Weight of apples = \sf \dfrac{73}{9}

Weight of oranges = \sf \dfrac{19}{6}

Let the weight of pears be x.

According to the question ;

\implies \sf  \frac{73}{9}  +  \frac{19}{6}  + x =  \frac{58}{3}  \\  \\ \implies \sf  \frac{146 + 57 + 18x}{18}  =  \frac{58}{3}  \\  \\ \implies \sf  \frac{203 + 18x}{18}  =  \frac{58}{3}  \\  \\ \bf on \: cross - multiplying :  \\  \\ \implies \sf  3(203 + 18x) = 58 \times 18 \\  \\ \implies \sf 203 + 18x =  \frac{58 \times 18}{3}  \\  \\ \implies \sf 203 + 18x = 348 \\  \\ \implies \sf 18x = 348 - 203  \\  \\\implies \sf 18x = 145\\  \\ \implies \sf x =  \frac{145}{18}  \\  \\

Hence, the weight of pears is \bf \dfrac{145}{18} .

_______________________

Verification ;

\implies \sf  \frac{73}{9}  +  \frac{19}{6}  +  \frac{145}{18}  =  \frac{58}{3}  \\  \\ \implies \sf  \frac{146 + 57 + 145}{18}  =  \frac{58}{3}  \\  \\ \implies \sf  \frac{348}{18}  =  \frac{58}{3}  \\ \\  \implies \sf   \frac{58}{3}  =  \frac{58}{3}

_______________________

Hence, the weight of pears is \bf \dfrac{145}{18} .

Similar questions