Math, asked by 612018, 2 months ago

A basketball court is a rectangle with a perimeter of 19m^2 + 2m - 10 and a width of m^2. Find an expression for the length.

Answers

Answered by datars211gmilcom
0

Answer:

perimeter of basketball court =19m²+2m-10

2(l+b). =19m²+2m-10

l+m²=19m²+2m-10/2

l=19m²+2m-10/2-m²

l=19m²+2m-10-2m²/2

l=17m²+2m-10/2

l=17m²/2+m+5

Answered by MяMαgıcıαη
128

Question :

A basketball ⛹ court is rectangular in shape with a perimeter of 19m² + 2m - 10 and a width of . Find an expression for the length.

Answer :

  • An expression for length is 17/2 m² + m - 5

Step by step explanation :

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

Here, we have :

  • Perimeter = 19 + 2m - 10
  • Width = m²

Using formula :

\qquad\red\bigstar\:{\tiny{\underline{\boxed{\bf{\green{Perimeter_{(rectangle)} = 2(Length + Width)}}}}}}

Putting all know values :

\dashrightarrow\qquad\sf 19m^2 + 2m - 10 = 2(Length + m^2)

\dashrightarrow\qquad\sf 19m^2 + 2m - 10 = 2(Length) + 2m^2

\dashrightarrow\qquad\sf 19m^2 + 2m - 10 - 2m^2 = 2(Length)

\dashrightarrow\qquad\sf 19m^2 - 2m^2 + 2m - 10 = 2(Length)

\dashrightarrow\qquad\sf 17m^2 + 2m - 10 = 2(Length)

\dashrightarrow\qquad\sf \dfrac{17m^2 + 2m - 10}{2} = Length

\dashrightarrow\qquad\sf \dfrac{17m^2}{2} + \dfrac{2m}{2} - \dfrac{10}{2} = Length

\dashrightarrow\qquad\sf \dfrac{17m^2}{2} + \dfrac{\cancel{2}m}{\cancel{2}} - \dfrac{\cancel{10}}{\cancel{2}} = Length

\dashrightarrow\qquad{\boxed{\frak{\pink{Length = \dfrac{17}{2}m^2 + m - 5 }}}}\:\purple\bigstar

ㅤㅤㅤㅤㅤㅤ━━━━━━━━━━

\small\therefore\:{\underline{\sf{Hence,\:an\:expression\:for\:length\:is\:\bf{\frac{17}{2}m^2 + m - 5}\:\sf{respectively.}}}}

Similar questions