Physics, asked by anuradhabajpai553, 11 months ago

A bicycle initially m
5.0 m s-accelerates for
will be its final velocity ?
initially moving with a velocity
celerates for 5 s at a rate of 2 ms. What will be it's final velocity

Answers

Answered by BrainlyConqueror0901
64

Correct question :

A bicycle initally moving with a velocity of 5 m/s. It accelerated for 5 s at a rate of 2 m/s^2. what will be it's final velocity at the end of 5 second.

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Final\:velocity=15\:m/s}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:   \implies Initial \: velocity(u) = 5 \: ms \\  \\  \tt:  \implies Acceleration(a) = 2  \: {ms}^{2}  \\  \\  \tt:  \implies Time(t) = 5 \: sec \\  \\  \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Final \: velocity(v) = ?

• According to given question :

  \bold{As \: we \: know \: that} \\  \tt:  \implies v = u + at \\  \\  \tt:  \implies v = 5 + 2 \times 5 \\  \\ \tt:  \implies v = 5 + 10 \\  \\  \green{\tt:  \implies v = 15 \: m/s} \\  \\  \bold{Alternate \: method : } \\  \tt:  \implies s = ut +  \frac{1}{2}{at}^{2}  \\  \\ \tt:  \implies s = 5 \times 5 +  \frac{1}{2}  \times 2 \times 25 \\  \\ \tt:  \implies s =25 + 25 \\  \\ \tt:  \implies s = 50 \: m \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies  {v}^{2}  =  {u}^{2}  + 2as \\  \\ \tt:  \implies  {v}^{2}  =  {5}^{2}  + 2 \times 2 \times 50\\  \\ \tt:  \implies {v}^{2}  = 25 + 200 \\  \\ \tt:  \implies {v}^{2}  = 225 \\  \\ \tt:  \implies v =   \sqrt{225}  \\  \\  \green{\tt:  \implies v = 15 \: m/s}

Answered by EliteSoul
120

AnswEr:-

Final velocity (v) = 15 m/s

\rule{200}1

Correct question :-

A bicycle initially moving with a velocity of 5 m/s accelerates for 5 s at a rate of 2 m/s².What will be it's final velocity?

Given :-

  • Initial velocity (u) = 5 m/s
  • Acceleration(a) = 2 m/s²
  • Time(t) = 5 s

To find :-

  • Final velocity (v) = ?

Solution :-

We know formula:-

\star\: {\boxed{\rm{\blue{s = ut + \dfrac{1}{2} at^2 }}}}

\dashrightarrow\sf s = 5(5) + \dfrac{1}{2}\times 2(5)^2 \\\\\dashrightarrow\sf s = 25 + \dfrac{1}{2}\times 2 \times 25 \\\\\dashrightarrow\sf s = 25 + \dfrac{1}{2}\times 50 \\\\\dashrightarrow\sf s = 25 + 25 \\\\\dashrightarrow{\underline{\boxed{\textsf{\textbf{s = 50 m }}}}}\: \star

\rule{100}{2}

We also know,

\star\:{\boxed{\rm{\green{v^2 = u^2 + 2as }}}}

\dashrightarrow\sf v^2 = (5)^2 + 2 \times 2 \times 50 \\\\\dashrightarrow\sf v^2 = 25 + 200 \\\\\dashrightarrow\sf v^2 = 225 \\\\\dashrightarrow\sf v = \sqrt{225} \\\\\dashrightarrow{\underline{\boxed{\bold{v = 15 \: m/s^2 }}}}\: \star

Final velocity = 15 m/s²

Similar questions