Physics, asked by 6352096590, 8 months ago

A block of mass 6 kg is kept in equilibrium with the
help of strings as shown in figure. The tension in string
PQ is (g = 10 m/s2)

Attachments:

Answers

Answered by nirman95
9

Given:

A block of mass 6 kg is kept in equilibrium with the help of strings as shown in figure.

To find:

Tension in string PQ.

Calculation:

Let tension in PR be T1 and that of PQ be T2.

Applying Lami's Theorem:

 \rm{ \therefore \:  \dfrac{T1}{ \sin( {90}^{ \circ} ) }  =  \dfrac{T2}{ \sin( {90}^{ \circ} +  {30 }^{ \circ}  ) }  =  \dfrac{6g}{ \sin( {90}^{ \circ} +  {60}^{ \circ}  ) } }

 \rm{  =  >  \:  \dfrac{T1}{ \sin( {90}^{ \circ} ) }  =  \dfrac{T2}{ \cos(  {30 }^{ \circ}  ) }  =  \dfrac{6g}{ \cos(  {60}^{ \circ}  ) } }

 \rm{  =  >  \:  \dfrac{T1}{ 1 }  =  \dfrac{T2}{ \cos(  {30 }^{ \circ}  ) }  =  \dfrac{6g}{ \cos(  {60}^{ \circ}  ) } }

 \rm{  =  >  \:  T1  =  \dfrac{T2}{ \cos(  {30 }^{ \circ}  ) }  =  \dfrac{6g}{ \cos(  {60}^{ \circ}  ) } }

Considering the second two values:

 \rm{  =  >  \:    \dfrac{T2}{ \cos(  {30 }^{ \circ}  ) }  =  \dfrac{6g}{ \cos(  {60}^{ \circ}  ) } }

 \rm{  =  >  \:    \dfrac{T2}{ \cos(  {30 }^{ \circ}  ) }  =  \dfrac{60}{ \cos(  {60}^{ \circ}  ) } }

 \rm{  =  >  \:    \dfrac{T2}{ ( \frac{ \sqrt{3} }{2} )}  =  \dfrac{60}{ ( \frac{1}{2} )} }

 \rm{  =  >  \:    \dfrac{T2}{ \sqrt{3} }  =  60 }

 \rm{  =  >  \:    T2 =  60 \sqrt{3}   \: N }

So, final answer:

 \boxed{ \bf{   \:    T2 =  60 \sqrt{3}   \: N }}

Similar questions