A block of mass m is placed on a smooth wedge of inclination
Answers
Answer:
Explanation:
For an observer on the ground
Rsinθ=ma,Rcosθ=mgRsinθ=ma,Rcosθ=mg
⇒a=gtanθ⇒a=gtanθ
(ii) F=(M+m)a=(M+m)gtanF=(M+m)a=(M+m)gtan●
iii) Force exerted by the wedge on the block
⇒=mgcosθorR=mgsecθ⇒=mgcosθorR=mgsecθ
If inclination is given as 1 in x, sinθ=1xsinθ=1x
tan=1x2−1−−−−−√tan=1x2-1
⇒⇒ Acceleration a=gtan=gx2−1−−−−−√
For an observer on the ground
For an observer on the groundRsinθ=ma,Rcosθ=mgRsinθ=ma,Rcosθ=mg
For an observer on the groundRsinθ=ma,Rcosθ=mgRsinθ=ma,Rcosθ=mg⇒a=gtanθ⇒a=gtanθ
For an observer on the groundRsinθ=ma,Rcosθ=mgRsinθ=ma,Rcosθ=mg⇒a=gtanθ⇒a=gtanθ(ii) F=(M+m)a=(M+m)gtanF=(M+m)a=(M+m)gtan●
For an observer on the groundRsinθ=ma,Rcosθ=mgRsinθ=ma,Rcosθ=mg⇒a=gtanθ⇒a=gtanθ(ii) F=(M+m)a=(M+m)gtanF=(M+m)a=(M+m)gtan●iii) Force exerted by the wedge on the block
For an observer on the groundRsinθ=ma,Rcosθ=mgRsinθ=ma,Rcosθ=mg⇒a=gtanθ⇒a=gtanθ(ii) F=(M+m)a=(M+m)gtanF=(M+m)a=(M+m)gtan●iii) Force exerted by the wedge on the block⇒=mgcosθorR=mgsecθ⇒=mgcosθorR=mgsecθ
For an observer on the groundRsinθ=ma,Rcosθ=mgRsinθ=ma,Rcosθ=mg⇒a=gtanθ⇒a=gtanθ(ii) F=(M+m)a=(M+m)gtanF=(M+m)a=(M+m)gtan●iii) Force exerted by the wedge on the block⇒=mgcosθorR=mgsecθ⇒=mgcosθorR=mgsecθIf inclination is given as 1 in x, sinθ=1xsinθ=1x
For an observer on the groundRsinθ=ma,Rcosθ=mgRsinθ=ma,Rcosθ=mg⇒a=gtanθ⇒a=gtanθ(ii) F=(M+m)a=(M+m)gtanF=(M+m)a=(M+m)gtan●iii) Force exerted by the wedge on the block⇒=mgcosθorR=mgsecθ⇒=mgcosθorR=mgsecθIf inclination is given as 1 in x, sinθ=1xsinθ=1xtan=1x2−1−−−−−√tan=1x2-1
For an observer on the groundRsinθ=ma,Rcosθ=mgRsinθ=ma,Rcosθ=mg⇒a=gtanθ⇒a=gtanθ(ii) F=(M+m)a=(M+m)gtanF=(M+m)a=(M+m)gtan●iii) Force exerted by the wedge on the block⇒=mgcosθorR=mgsecθ⇒=mgcosθorR=mgsecθIf inclination is given as 1 in x, sinθ=1xsinθ=1xtan=1x2−1−−−−−√tan=1x2-1⇒⇒ Acceleration a=gtan=gx2−1−−−−−√