Physics, asked by Amritha6576, 11 months ago

A block of mass m resting on a wedge of angle Ѳ as shown in figure. The wedge is given an
acceleration a. What is the minimum value of a so
that the mass m falls freely?
(A) g
(B) g cos Ѳ
(C) g cot Ѳ
(D) g tan Ѳ ​

Attachments:

Answers

Answered by BrainlyConqueror0901
69

Figure

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Acceleration=g\:cot\:\theta}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}} \\  \tt:  \implies Mass \: of \: block = m \\  \\  \tt:  \implies Angle \: of \: wedge =  \theta \\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Minimum \: acceleration \: so \: that \: mass \:( m) \:falls \: freely = ?

• According to given question :

 \bold{As \: according \: to \: given \: fbd} \\  \tt:  \implies N \: cos \: \theta = ma -  -  -  -  - (1) \\  \\  \tt:  \implies N \:sin \: \theta = mg -  -  -  -  - (2) \\  \\  \text{Dividing \: (2) \: by \: (1)} \\  \tt:  \implies  \frac{N \: sin \: \theta}{N \: cos \: \theta}  =  \frac{mg}{ma}  \\  \\  \tt:  \implies tan \:  \theta =  \frac{g}{a}  \\  \\  \tt:  \implies a =  \frac{g}{tan \:  \theta}  \\  \\  \tt:  \implies a =  \frac{g}{ \frac{1}{cot \: \theta} }  \\  \\  \green{ \tt:  \implies a = g \: cot  \: \theta} \\  \\   \green{\tt{\therefore Minimum \: acceleration \: is \:( g \: cot  \: \theta)}}

Attachments:
Similar questions