Physics, asked by sau601471, 9 months ago

A block of wood of mass 24 kg floats on water. The volume of the wood is 0.032 m^3.
Find the volume of the block below the surface of the water and the density of the wood.
(density of water = 1000 kg/m^3).

Answers

Answered by abhinavrajput422
3

Now the density of the wood given by

vm=0.03224

 =750m3kg

By principle of floation

Mass of wood=mass of liquid displaced.

mass of liquid displaced=24kg

Volume of liquid displaced (v)

=vm=100024=0.024m3

Therefore, volume of wood inside the water will be

=0.0320.024=0.75m3

Answered by Anonymous
14

1

</p><p>Given:-Given:−</p><p></p><p>Mass of the block of wood = 24 kg=24kg</p><p></p><p>Volume of wood = 0.032 m^3=0.032m3</p><p></p><p>Density of water = 1000kg/m^3=1000kg/m3</p><p></p><p>Now,</p><p></p><p>Density of wood is given by,</p><p></p><p>\begin{gathered} \frac{m}{v} = \frac{24}{0.032} \\\end{gathered}vm=0.03224</p><p></p><p>\frac{m}{v} = 750 \: kg/m ^{3}vm=750kg/m3</p><p></p><p>Therefore,</p><p></p><p>The density of wood is 750kg/m^3750kg/m3</p><p></p><p>By principle of floatation,</p><p></p><p>Mass \:of\: wood = Mass\: of\: liquid \:displacedMassofwood=Massofliquiddisplaced</p><p></p><p>Therefore,</p><p></p><p>Mass of liquid displaced = 24kg=24kg</p><p></p><p>Volume of liquid displaced (v),</p><p></p><p>\begin{gathered} \frac{m}{v} = \frac{24}{1000} \\\end{gathered}vm=100024</p><p></p><p>\frac{m}{v} = 0.24m ^{3}vm=0.24m3</p><p></p><p>Now,</p><p></p><p>Since the volume of the wood is equal to the volume of water displaced, it is 0.024m^30.024m3</p><p></p><p>=====</p><p>Note:Note:</p><p>=====</p><p></p><p>=&gt; The volume of the wood below the water surface is the volume of water displaced.</p><p></p><p>=&gt; Buoyant\: force = Weight\: of\: the \:displaced\: water.Buoyantforce=Weightofthedisplacedwater.

Similar questions