Math, asked by mamtapraja2350, 9 months ago

a boat can go 20 km upstream and 30 km downstream in 3 hours. it can go 20 km downstream and 10 km upstream in 1*2/3 hours. find the speed if the boat in still water and the speed of the stream.

Answers

Answered by knjroopa
11

Step-by-step explanation:

Given a boat can go 20 km upstream and 30 km downstream in 3 hours. it can go 20 km downstream and 10 km upstream in 1*2/3 hours. find the speed if the boat in still water and the speed of the stream.

  • Let the speed of the boat be m km/hr and speed of the stream be n km/hr.
  • So speed upstream will be m – n and speed downstream will be m + n km / hr
  • Now speed = distance / time
  •        So time = distance / speed
  •                3 = 20 / m – n + 30 / m + n
  •       Let 1/m – n = p and 1/m + n = q
  •      So we have  
  •                    30p + 20 q = 3 -------1
  • Also we have  
  •          1 2/3 = 10 / m -n + 20 / m + n
  •                20 p + 10 q = 5/3 ---------2  
  •                     Multiply by 2 we get
  •             40p + 20 q = 10/3
  • So the equations are      
  •                            30p + 20 q = 3
  •                            40p + 20 q = 10 / 3
  •              Subtracting we get
  •                         So – 10 p = - 1/3
  •                             Or p = 1/30
  •       Substituting value of p in 1 we get
  •                 30 (1/30) + 20 q = 3
  •                     Or 20 q = 3 - 1
  •                       Or q = 2/20
  •                         Or q = 1/10
  •          Now 1/ m + n = 1/30
  •                Or m + n = 30
  •               1/m – n = 1/10
  •                  Or m – n = 10
  •               So m + n = 30
  •             And m – n = 10
  •                    So 2m = 40
  •                        Or m = 20
  •         Also m + n = 30
  •                 20 + n = 30
  •                      Or n = 10
  • Therefore speed of the boat in still water is 20 km / hr and speed of the stream is 10 km/hr

Reference link will be

https://brainly.in/question/4277614

Answered by Agastya0606
7

Given: A boat can go 20 km upstream and 30 km downstream in 3 hours. it can go 20 km downstream and 10 km upstream in 1*2/3 hours.

To find: The speed of the boat in still water and the speed of the stream.

Solution:

  • Now we have given boat can go 20 km upstream and 30 km downstream in 3 hours.
  • So let the speed of the boat be x and speed of stream be y km/hr
  • Then the speed up stream will be:  (x-y) km/hr and speed downstream will be ( x +y) km/hr.
  • Now we know time = distance / speed

              3 = 20/(x-y) + 30/(x+y)

  • Consider 1/x-y as a and 1/x-y as b, then:

              3 = 20a + 30b ............(i)

  • Now we have given it can go 20 km downstream and 10 km upstream in 1*2/3 hours, so:

                1 + 2/3 = 10/(x-y) + 20/(x+y)

  • Consider 1/x-y as a and 1/x+y as b, then:

              5/3 = 10a + 20b .............(ii)

  • Now solving (ii)x3 - (i)x2, we get:

                5 = 30a + 60b

              - 6 = -40a - 60b

              -1 = -10a

              a = 1/10

  • Putting a in (i), we get:

              3 = 2 + 30b

              b = 1/30

  • Now re substituting, we get:

              1/(x+y) = b = 1/30

              x+y = 30  .......(iii)

              1/(x-y) = a = 1/10

              x-y = 10   ...........(iv)

  • Now solving iii and iv, we get:

              2x = 40

              x = 20 km/hr

              So y = 10 km/hr

Answer:

               So the speed of the boat is 20 km/hr and speed of stream is 10 km/hr.

Similar questions