Math, asked by khushali1687, 8 months ago

A boat covers 32 km upstream and 36 km downstream in 7 hours. Also, it covers 40 km upstream and 48 km downstream in the same time. Find the speed of the boat in still water and that of the stream.​

Answers

Answered by Sergioromas
0

Answer:

What would you like to ask?

10th

Maths

Pair of Linear Equations in Two Variables

Algebraic Solution of a Pair of Linear Equations

A boat covers 32 km upstrea...

MATHS

avatar

Asked on November 22, 2019 by

Prateek Tiwari

A boat covers 32 km upstream and 36 km downstream in 7 hours. Also, it covers 40 km upstream and 48km downstream in 9 hours. Find the speed of the boat in still water and that of the stream.

MEDIUM

Help best friend

Study later

ANSWER

Let the speed of the boat in still water be x km/hr and the speed of the stream but y km/hr. Then,

Speed upstream =(x−y)km/hr

Speed downstream =(x+y) km/hr

Now, Time taken to cover 32km upstream =

x−y

32

hrs

Time taken to cover 36 km downstream =

x+y

36

hrs

But, total time of journey is 7 hours.

x−y

32

+

x+y

36

=7 ..(i)

Time taken to cover 40km upstream =

x−y

40

Time taken to cover 48 km downstream =

x+y

48

In this case, total time of journey is given to be 9 hours.

x−y

40

+

x+y

48

=9 (ii)

Putting

x−y

1

=u and

x+y

1

=v in equations (i) and (ii), we get

32u+36v=7⇒32u−36v−7=0 ..(iii)

40u+48v=9⇒40u−48v−9=0 ..(iv)

Solving these equations by cross-multiplication, we get

36×−9−48×−7

u

=

32×−9−40×−7

−v

=

32×48−40×36

1

−324+336

u

=

−288+280

−v

=

1536−1440

1

12

u

=

8

v

=

96

1

⇒u=

96

12

and v=

96

8

⇒u=

8

1

and v=

12

1

Now, u=

8

1

x−y

1

=

8

1

⇒x−y=8 ..(v)

and, v=

12

1

x+y

1

=

12

1

⇒x+y=12 ..(vi)

Solving equations (v) and (vi), we get x=10 and y=2

Hence, Speed of the boat in still water =10 km/hr

and Speed of the stream =2km

Similar questions