Math, asked by rknaturephysio, 1 month ago

a boat covers 40 km upstream and 36 km downstream in 8 hours also it covers 48 km upstream and 72 km downstream in 12hrs . find the speed of the boat in still water and that of the stream .​

Answers

Answered by DeeznutzUwU
1

       \underline{\bold{Solution:}}

       \text{Let the speed of the boat and stream be }x \text{ and }y \text{ respectively}

       \text{Upstream means against the flow of the stream}

       \text{Downstream means towards the flow of the stream}

\implies \text{Speed of boat upstream} = (x-y)

\implies \text{Speed of boat downstream} = (x+y)

       \text{According to the question:}

       \text{Boat covers 40 km upstream and 36 km downstream in 8 hours}

       \text{We know that Time} = \dfrac{\text{Distance}}{\text{Speed}}

\implies \dfrac{40}{x - y} + \dfrac{36}{x + y} = 8

\implies \dfrac{10}{x - y} + \dfrac{9}{x + y} = 2 \text{ ------ (i)}

       \text{Boat also covers 48 km upstream and 72 km downstream in 12 hours}

\implies \dfrac{48}{x - y} + \dfrac{72}{x + y} = 12

\implies \dfrac{4}{x - y} + \dfrac{6}{x + y} = 1 \text{ ------ (ii)}

       \text{Let }a = \dfrac{1}{x-y}\text{ and }b = \dfrac{1}{x + y}

\implies \text{The new equations are:}

       10a + 9b = 2 \text{ ------ (iii)}

       4a + 6b = 1 \text{ ------ (iv)}

       \text{From (iv) we get that}

       a = \dfrac{1-6b}{4}

       \text{Substituting in (iii)}

\implies 10(\dfrac{1-6b}{4}) + 9b = 2

       \text{Simplifying...}

\implies 5(\dfrac{1-6b}{2}) + 9b = 2

       \text{Simplifying...}

\implies \dfrac{5-30b}{2} + 9b = 2

       \text{Simplifying...}

\implies \dfrac{5-30b+ 18b}{2} = 2

       \text{Simplifying...}

\implies \dfrac{5-12b}{2} = 2

       \text{Transposing 2 to R.H.S and simplifying...}

\implies 5 - 12b = 4

       \text{Transposing 5 to R.H.S}

\implies  - 12b = 4 - 5

       \text{Simplifying...}

\implies  - 12b = -1

       \text{Transposing 12 to R.H.S}

\implies  b = \dfrac{1}{12}

       \text{Substituting in (iv)}

\implies 4a + 6(\dfrac{1}{12})= 1

       \text{Simplifying...}

\implies 4a + \dfrac{1}{2} = 1

       \text{Transposing } \dfrac12\text{ to R.H.S and simplifying...}

\implies 4a = \dfrac12

       \text{Transposing } 4 \text{ to R.H.S and simplifying...}

\implies a = \dfrac18

       \text{We know that }a = \dfrac{1}{x-y}\text{ and }b = \dfrac{1}{x + y}

\implies \dfrac{1}{x-y} = \dfrac18                    \implies\dfrac{1}{x + y} = \dfrac{1}{12}

\implies x-y = 8 \text{ ------ (v)}       \implies x + y = 12 \text{ ------ (vi)}

       \text{Adding (v) and (vi)}

\implies x-y + x+ y = 8 + 12

       \text{Simplifying...}

\implies 2x = 20

       \text{Transposing } 2 \text{ to R.H.S and simplifying...}

\implies x = 10

       \text{Substituting in (v)}

\implies 10 - y = 8

       \text{Transposing } 10 \text{ to R.H.S and simplifying...}

\implies - y = -2

       \text{Simplifying...}

\implies y = 2

 \therefore \text{ }\text{ }\boxed{\text{Speed of boat = 10 km/h and Speed of stream = 2 km/h}}

Similar questions