Math, asked by juliebenny1978, 10 months ago

a boat goes 24 km upstream and 28 km downstream in 6 hours it goes 30 km upstream and 21 km downstream in 6 hours and 30 minutes.find the boat in stil water​

Answers

Answered by TheVenomGirl
12

AnSwer:

Let speed of boat in still water be x km/hr.

Let present rate be y km/hr.

∴ Speed of the boat upstream =(x-y) km/hr.

According to the question,

 \sf \longmapsto \:  \:  \dfrac{24}{x - y} +  \dfrac{28}{x + y} = 6 \:  \:  -  -  -  - (1)   \\  \\ \\   \sf \longmapsto \:  \:  \dfrac{30}{x - y} +  \dfrac{21}{x + y}  =  \dfrac{13}{2}  \:  \:  -  -  -  - (2)

Now,

From eqn (1) and (2) respectively,

 \sf \longmapsto \:  \:   \dfrac{1}{x - y}   =  \dfrac{1}{6}  \: and \:  \dfrac{1}{x + y}  =  \dfrac{1}{14}  \\  \\  \sf \longmapsto \:   \: x - y = 6 \: -  - (3) \\  \\  \sf \longmapsto \:   \:  x+ y = 14 -  - (4) \\  \\

Now by substitution method,

Considering eqn (3),

 \sf \longmapsto \:  \:x = 6 + y -  - (5)

Substitute the value of x in eqn (4),

 \sf \longmapsto \:  \:x + y = 14 \\  \\  \sf \longmapsto \:  \:(6 + y) + y = 14 \\  \\ \sf \longmapsto \:  \:6 + 2y = 14 \\  \\  \sf \longmapsto \:  \:2y = 14 - 6 \\  \\   \sf \longmapsto \:  \:y =  \dfrac{8}{2}  \\  \\  \longmapsto { \underline{ \boxed{ \purple{ \sf{\:  \:y = 4}}}}}  \: \bigstar

Similarly, substitute the value of y = 4 in eqn (5),

 \sf \longmapsto \:  \:x = 6 + y \\  \\  \sf \longmapsto \:  \:x = 6 + 4 \\  \\  \sf \longmapsto { \underline{ \boxed{ \red{ \sf{\:  \:x = 10}}}}}  \: \bigstar

Present rate is 4 km/hr.

So, the speed of boat in still water is 10 km/hr.

Similar questions