Math, asked by anushkarajput2151, 1 year ago

A Boat goes 30 km upstream and 44 km downstream in 10 hour in 13 hour it can go 40 km upstream and 55 km downstream determine the speed of the stream and that of the boat in still water

Answers

Answered by TheUrvashi
8
Let the speed of the stream be = u kmph
let the speed of the boat be = v kmph

speed upstream will be = v - u  kmph
speed downstream will be =  v + u  kmph

30 km  upstream in time duration  =   30 / (v - u)  hrs
44 km  down stream in time duration  =  44 / (v + u)  hrs

       44 / (v + u)  + 30 / (v -u)  = 10 hrs     --- (1)

Similarly,

      40 /(v - u)  + 55 / (v +u)  = 13 hrs         Multiply with 3/4:  
      30/(v-u) + 165 / 4(v+u) =    39/4        --- (2) 

Now (1) - (2)  =>    [44 - 165/4] / (v+u) = 10 - 39/4 = 1/4
                   =>     v + u = 11      --- (3)
Substitute this in (1) to get: 
             44/11 + 30/(v-u) = 10
           =>  v - u = 30/6 = 5      --- (4)

Solving  (3) and (4) ,  we get :  v = 8 kmph    and  u = 3 kmph

Answered by BendingReality
0

Answer:

Speed of stream = 3 km / hr.

Speed of boat in still water = 8 km / hr.

Step-by-step explanation:

Let the speed of the boat in still water be a km / hr and stream be b km / hr

For upstream = a - b

For downstream = a + b

We know :

Speed = Distance / Time

Case 1 .

10 = 30 / a - b + 44 / a + b

Let 1 / a - b = x and 1 / a + b = y

30 x + 44 y = 10 ... ( i )

Case 2 .

13 = 40 / a - b + 55 / a + b

40 x + 55 y = 13 ... ( i )

Multiply by 4 in ( i ) and by 3 in ( ii )

120 x + 176 y = 40

120 x = 40 - 176 y ... ( iii )

120 x + 165 y = 39

120 = 39 - 165 y ... ( iv )

From ( iii )  and  ( iv )

40 - 176 y = 39 - 165 y

11 y = 1

y = 1 / 11

120 x = 40 - 176 y

120 x = 40 - 176 / 11

x = 1 / 5

Now :

1 / a - b = 1 / 5

a - b = 5

a = 5 + b ... ( v )

1 / a + b = 1 / 11

a + b = 11

a = 11 - b ... ( vi )  

From ( v  ) and ( vi )

11 - b = 5  + b

2 b = 6

b = 3

a = 5 + b

a = 5 + 3

a = 8

Hence we get answer.

Similar questions