Math, asked by Meetvasani91, 11 months ago

A boat goes 30 km upstream and 44 km downstream in 10 hours. In 13 hours, it can go 40 km upstream and 55
km downstream. Determine the speed of the stream and that of the boat in still water.​

Answers

Answered by BendingReality
4

Answer:

Speed of stream = 3 km / hr.

Speed of boat in still water = 8 km / hr.

Step-by-step explanation:

Let the speed of the boat in still water be a km / hr and stream be b km / hr

For upstream = a - b

For downstream = a + b

We know :

Speed = Distance / Time

Case 1 .

10 = 30 / a - b + 44 / a + b

Let 1 / a - b = x and 1 / a + b = y

30 x + 44 y = 10 ... ( i )

Case 2 .

13 = 40 / a - b + 55 / a + b

40 x + 55 y = 13 ... ( i )

Multiply by 4 in ( i ) and by 3 in ( ii )

120 x + 176 y = 40

120 x = 40 - 176 y ... ( iii )

120 x + 165 y = 39

120 = 39 - 165 y ... ( iv )

From ( iii )  and  ( iv )

40 - 176 y = 39 - 165 y

11 y = 1

y = 1 / 11

120 x = 40 - 176 y

120 x = 40 - 176 / 11

x = 1 / 5

Now :

1 / a - b = 1 / 5

a - b = 5

a = 5 + b ... ( v )

1 / a + b = 1 / 11

a + b = 11

a = 11 - b ... ( vi )  

From ( v  ) and ( vi )

11 - b = 5  + b

2 b = 6

b = 3

a = 5 + b

a = 5 + 3

a = 8

Hence we get answer.

Similar questions