Math, asked by tavsubhavi, 1 year ago

A boat goes 30 km upstream and 44 km downstream in 10 hours .In 13 hours, it can go 40 km upstream and 55 km down-stream. Determine the speed of the stream and that of the boat in still water.

Answers

Answered by QGP
35
Let the speed of boat in still water = x km/h
Let the speed of stream = y km/h

Obviously, x>y.  (Otherwise the question cannot be solved)

Upstream                                         Downstream
                                        
velocity, v = x - y km/h                       v = x + y km/h
distance, d = 30 km                           d = 44 km

velocity = distance/time                     v = d/t   
∴ v = d/t                                            ∴x + y =  44/t
∴ x - y = 30/t                                     ∴t = 44 / (x+y) hours
∴ time t = 30 / (x-y) hours
------------------------------------------------------------------------------------------------
Now, the boat takes 10 hours to travel 30 km upstream and 44 km downstream.

∴ 30 / (x-y) + 44 / (x+y)  = 10 ------------------- (1)

Similarly the boat takes 13 hours to travel 40 km upstream and 55 km downstream
∴ 40 / (x-y) + 55 / (x+y) = 13 ---------------- (2)

Let 1/(x-y) = a   and  1/(x+y) = b

So, for equation (1)

30a + 44b = 10 
∴2 (15a + 22b) = 10
∴15a + 22b = 5 ---------------(3)

For equation (2)
40a + 55b = 13 ---------------(4)

Solving equations (3) and (4) by Elimination method.

15a + 22b = 5     Equation (3) * 8
40a + 55b = 13   Equation (4) * -3

∴120a + 176b = 40
 -120a - 165b = -39      Adding both equations
__________________
∴ 11b = 1
b = 1/11

Putting b = 1/11 in equation (3)
∴ 15a + 22 (1/11) = 5
∴ 15a + 2 = 5
∴15a = 5 - 2
∴15a = 3
∴a = 3/15
a = 1/5

Now,
a = 1/5                                      and     b = 1/11
∴1/(x-y) = 1/5                                     ∴1/(x+y) = 1/11
∴x - y = 5 ---------(5)                           ∴x + y = 11 ------------(6)

Solving equations (5) and (6) by Elimination Method,
 
x - y = 5
x + y = 11                 Adding (5) and (6)
________
∴2x = 16
x = 8

Putting x = 8 in equation (6)
∴ 8 + y = 11
∴y = 11 - 8
y = 3

Thus,
Speed of boat in still water = x = 8 km/h
Speed of stream = y = 3 km/h




LakshmiChandra: Great Job !!
QGP: Its my duty
QGP: Hope you got your answer
LakshmiChandra: hey yaar .. its not my qusn
QGP: I know.
QGP: But it might have helped you
LakshmiChandra: Yup ..!!
LakshmiChandra: Thnks !
QGP: Welcome
LakshmiChandra: :)
Answered by BendingReality
10

Answer:

Speed of stream = 3 km / hr.

Speed of boat in still water = 8 km / hr.

Step-by-step explanation:

Let the speed of the boat in still water be a km / hr and stream be b km / hr

For upstream = a - b

For downstream = a + b

We know :

Speed = Distance / Time

Case 1 .

10 = 30 / a - b + 44 / a + b

Let 1 / a - b = x and 1 / a + b = y

30 x + 44 y = 10 ... ( i )

Case 2 .

13 = 40 / a - b + 55 / a + b

40 x + 55 y = 13 ... ( i )

Multiply by 4 in ( i ) and by 3 in ( ii )

120 x + 176 y = 40

120 x = 40 - 176 y ... ( iii )

120 x + 165 y = 39

120 = 39 - 165 y ... ( iv )

From ( iii )  and  ( iv )

40 - 176 y = 39 - 165 y

11 y = 1

y = 1 / 11

120 x = 40 - 176 y

120 x = 40 - 176 / 11

x = 1 / 5

Now :

1 / a - b = 1 / 5

a - b = 5

a = 5 + b ... ( v )

1 / a + b = 1 / 11

a + b = 11

a = 11 - b ... ( vi )  

From ( v  ) and ( vi )

11 - b = 5  + b

2 b = 6

b = 3

a = 5 + b

a = 5 + 3

a = 8

Hence we get answer.

Similar questions