Math, asked by ayushidey2818, 9 months ago

A boat goes 35 km. upstream and 55 km down-stream in 12 hours. In 10
hours it can go 30 km. upstream and 44 km. down-stream. Determine the
speed of the stream and that of the boat in still water.​

Answers

Answered by Anonymous
6

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ speed \ of \ the \ stream \ and \ boat \ in}

\sf{still \ water \ are \ 3 \ km \ per \ hour \ and}

\sf{8 \ km \ per \ hour \ respectively.}

\sf\orange{Given:}

\sf{\implies{A \ boat \ goes \ 35 \ km \ upstream \ and}}

\sf{55 \ km \ downstream \ in \ 12 \ hours.}

\sf{\implies{In \ 10 \ hours \ it \ can \ go \ 30 \ km}}

\sf{upstream \ and \ 44 \ km \ downstream.}

\sf\pink{To \ find:}

\sf{The \ speed \ of \ the \ stream \ and \ the \ speed}

\sf{of \ the \ boat \ in \ still \ water.}

\sf\green{\underline{\underline{Solution:}}}

\sf{Let \ the \ speed \ of \ boat \ in \ still \ water \ be}

\sf{x \ km \ hr^{-1} \ and \ speed \ of \ stream \ be}

\sf{y \ km \ hr^{-1}}

\sf{\therefore{Speed \ of \ boat_{upstream}=(x-y) \ km \ hr^{-1}}}

\sf{Speed \ of \ boat_{downstream}=(x+y) \ km \ hr^{-1}}

\boxed{\sf{\frac{Distance}{Speed}=Time}}

\sf{According \ to \ the \ first \ condition.}

\sf{\frac{35}{x-y}+\frac{55}{x+y}=12...(1)}

\sf{According \ to \ the \ second \ condition.}

\sf{\frac{30}{x-y}+\frac{44}{x+y}=10....(2)}

\sf{Substitute \ \frac{1}{x-y} \ by \ a \ and \ \frac{1}{x+y} \ by \ b}

\sf{The \ equations \ (1) \ and \ (2) \ become}

\sf{35a+55b=12...(3)}

\sf{30a+44b=10}

\sf{\therefore{2(15a+22b)=10}}

\sf{\therefore{15a+22b=\frac{10}{2}}}

\sf{\therefore{15a+22b=5...(4)}}

\sf{Multiply \ equation (3) \ by \ 2, \ we \ get}

\sf{70a+110b=24...(5)}

\sf{Multiply \ equation (4) \ by \ 5, \ we \ get}

\sf{75a+110b=25...(6)}

\sf{Subtract \ equation (5) \ from \ equation (6)}

\sf{75a+110b=25}

\sf{-}

\sf{70a+110b=24}

____________________

\sf{5a=1}

\boxed{\sf{\therefore{a=\frac{1}{5}}}}

\sf{Substitute \ a=\frac{1}{5} \ in \ equation (3)}

\sf{35\times\frac{1}{5}+55b=12}

\sf{\therefore{7+55b=12}}

\sf{\therefore{55b=12-7}}

\sf{\therefore{55b=5}}

\sf{\therefore{b=\frac{5}{55}}}

\boxed{\sf{\therefore{b=\frac{1}{11}}}}

\sf{Resubstituting \ a=\frac{1}{x-y} \ and \ b=\frac{1}{x+y}}

\sf{\therefore{\frac{1}{x-y}=a}}

\sf{\therefore{\frac{1}{x-y}=\frac{1}{5}}}

\sf{\therefore{x-y=5...(7)}}

\sf{\frac{1}{x+y}=b}

\sf{\therefore{\frac{1}{x+y}=\frac{1}{11}}}

\sf{\therefore{x+y=11...(8)}}

\sf{Add \ equations (7) \ and \ (8)}

\sf{x-y=5}

\sf{+}

\sf{x+y=11}

_________________

\sf{\therefore{2x=16}}

\sf{\therefore{x=\frac{16}{2}}}

\boxed{\sf{\therefore{x=8}}}

\sf{Substitute \ x=8 \ in \ equation (8)}

\sf{8+y=11}

\sf{\therefore{y=11-8}}

\boxed{\sf{\therefore{y=3}}}

\sf\purple{\tt{\therefore{The \ speed \ of \ the \ stream \ and \ boat \ in}}}

\sf\purple{\tt{still \ water \ are \ 3 \ km \ per \ hour \ and}}

\sf\purple{\tt{8 \ km \ per \ hour \ respectively.}}

Similar questions