Math, asked by Saar0ka0tashan, 2 months ago

A boat is 40m away from the base of a cliff. Given that the angle of depression of the
boat from the top of the cliff is 60°, find the height of the cliff. (Take√ =1.732)

Answers

Answered by Anonymous
3

Given :

A boat is 40m away from the base of a cliff. The angle of depression of the boat from the top of the cliff is 60°.

To Find :

The height of the cliff.

Solution :

Let A be the top of the cliff.

So, AB = h metres

Let C be the position of boat 40 metres away from the cliff of angle of depression 60°,

  • ∠ACB = 60°

  • ∠ABC = 90°

The base is given to us. We have to find the height.

We know that,

From right angled ∆ABC,

\boxed{\bf\tan\ 60^{\circ}=\dfrac{Height}{Base}}

\\ \implies\sf\tan\ 60^{\circ}=\dfrac{AB}{BC}

where,

  • tan 60° = √3
  • AB = h m
  • BC = 40 m

Substituting the values,

\\ \implies\sf\sqrt{3}=\dfrac{h}{40}

By cross multiplying,

\\ \implies\sf\sqrt{3}\times40=h

Taking 3 = 1.732,

\\ \implies\sf1.732\times40=h

\\ \implies\sf69.28=h

\\ \therefore\boxed{\bf Height=69.28\ m.}

The height of the cliff is 69.28 m.

Explore More :

Trigonometric Ratio :

\\ \sf\bullet\ \sin\theta=\dfrac{Height}{Hypotenuse}

\\ \sf\bullet\ \cos\theta=\dfrac{Base}{Hypotenuse}

\\ \sf\bullet\ \tan\theta=\dfrac{Height}{Base}

\\ \sf\bullet\ \cot\theta=\dfrac{Base}{Height}

\\ \sf\bullet\ \sec\theta=\dfrac{Hypotenuse}{Base}

\\ \sf\bullet\ \cosec\theta=\dfrac{Hypotenuse}{Height}

Trigonometric Table :

\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

Attachments:
Answered by sohamc060
2

Answer:

Given:

A boat is 40m away from the base of a cliff.

The angle of depression of the boat from the

top of the cliff is 60°.

To Find

The height of the cliff.

Solution:

Let A be the top of the cliff.

So, AB =h metres

Let C be the position of boat 40 metres away

from the cliff of angle of depression 60,

LACB= 60°

LABC = 90°

The base is given to us. We have to find the

height.

We know that,

From right angled AABC,

Height

tan 60 =

Base

AB

tan 60= BO

BC

where,

tan 60° = V3

AB h m

BC 40 m

Substituting the values,

Step-by-step explanation:

hope it's helpful

Attachments:
Similar questions