Math, asked by simmik494, 10 months ago

A boat man rowed to a place along the current and returned against the current in 15hrs. If the speed of the boat in still water is 6km/h and that of the current be 2km/h then find the distance of the place.​

Answers

Answered by utsavrai15
0

I do not know answer

please make Me brainlist

Answered by silentlover45
0

\large\underline\mathrm\red{Given:-}

  • \large\mathrm{Total \: time \: taken \: = \: 15 \: hr}

  • \large\mathrm{Speed \: of \: boat \: = \: 6 \: km/hr}

  • \large\mathrm{Speed \: of \: current \: = \: 2 \: km/hr}

\large\underline\mathrm\red{To \: find}

  • \large\mathrm{Distance \: of \: the \: place?}

\large\underline\mathrm\red{Solution}

\large\mathrm{Let \: the \: distance \: be \: x}

\large\mathrm{The \: time \: taken \: while \: going \: to \: place \: be \: t.}

\large\mathrm{≫ \: Speed \: against \: current \: ( 6 \: - \: 2 )km/hr}

\large\mathrm{⟹ 4 \: km/hr}

\large\mathrm{≫ \: Speed \: along \: current \: = \: ( 6 \: + \: 2 ) \: km/hr}

\large\mathrm{⟹ 8 \: km/hr}

\large\mathrm{⟹ Sailed \: along \: with \: current \: while \: going.}

\large\underline\mathrm\red{Distance \: ⟹ \: speed \: × \: time}

\large\mathrm{⟹ x \: = \: 8 \: × \: t}

\large\mathrm{⟹ x = 8t}_____(1)

\large\mathrm{⟹ Sailed \: against \: current \: while \: returning.}

\large\mathrm{⟹ x = 4 × ( 15 - t ). \:\:\: (Total \: time \: taken \: = 15)}

\large\mathrm{⟹ x = 60}_____(2)

\large\underline\mathrm\red{Solving \: Eq \: (1) \: and \: (2). \: We \: get}

\large\mathrm{⟹ 8t = 60 \: - \: 4t}

\large\mathrm{⟹ 12t = 60}

\large\mathrm{⟹ t = 5}

\large\underline\mathrm\red{Thus},

\large\underline\mathrm\red{Distance \: ⟹ \: speed \: × \: time}

\large\mathrm{Distance \: ⟹ 8 × 5}

\large\mathrm{Distance ⟹ 40 km.}

__________________________________

Similar questions