Physics, asked by vishbk1314, 8 months ago

A body completes one revolution of a circular track of 4 m radius in 2 s. What will be the average velocity
of body?

Answers

Answered by zahaansajid
24

Answer:

Average velocity = 0 m/s

Explanation:

Average velocity = Total Displacement / Total time

In the given case,

Total displacement = Shortest distance between inital and final point

Since, the body returns back to its initial position

Displacement = 0 m

Hence,

Total displacement = 0 m

Total time = 2 s

Therefore,

Average Velocity = Total Displacement / Total Time

Average Velocity = 0 / 2

Average Velocity = 0 m/s


Anonymous: Great :)
Answered by Anonymous
41

\large\underline{\sf{\red{Given:}}}

\sf{Revolution\:of\:circular\:track =4m}

\sf{Radius = 2s}

\large\underline{\sf{\red{To\:Find:}}}

\sf{Average\: velocity\:of\:body.}

\large\underline{\sf{\red{Solution:}}}

Concept:

\bigstar\: \sf{Body\: completes\:one\: revolution\:of\:a\: circular\:track.}

\bigstar\: \sf{Hence,\:body\: returns\:to\: original\: position.}

\sf{Hence\: Displacement\: =0}

\bigstar\: \sf{Average \:velocity\: refers\: to\: total\: displacement}

\sf{travelled\: by \:the\: object\: in\: total\: time.}

\sf{Mathematically,}

\sf{Average\: velocity\: \Large\ \frac{total \:displacement}{total\: time}.}

Calculation:

\dashrightarrow\: \sf{Average\: Velocity= \Large\ \frac{Displacement}{Time}.}

\dashrightarrow\: \sf{Average\: Velocity= 0/2}

\dashrightarrow\: \underline{\boxed{\bf{\orange{0m/s}}}}

\sf{Hence, \:Average\: Velocity\:of\:body= 0m/s .}


Anonymous: Awesome :)
Similar questions