Physics, asked by bnadatti2226, 11 months ago

A body covers a total distance of 3s. The first s is covered with a velocity u the second s with V and the last s with omega. Then, the average velocity during the whole journey is

Answers

Answered by nirman95
11

Answer:

Given:

Total distance = 3s

First part is covered with u , 2nd part with v , 3rd party with ω.

To find:

Average Velocity in the whole journey.

Concept:

Average Velocity is the ratio of total displacement to the total time taken.

Calculation:

v_{avg}  =  \dfrac{total \: distance}{total \: time}

 =  > v_{avg}  =  \dfrac{3s}{ \dfrac{s}{u} +  \dfrac{s}{v}   +  \dfrac{s}{ \omega} }

 =  > v_{avg}  =  \dfrac{3}{ \dfrac{1}{u} +  \dfrac{1}{v}   +  \dfrac{1}{ \omega} }

 =  > v_{avg}  =   \dfrac{3}{ \bigg( \dfrac{uv + u \omega + v \omega}{uv \omega} \bigg) }

 =  > v_{avg}  =    \dfrac{3uv \omega}{ \bigg(uv + v \omega + u \omega \bigg)}

So final answer :

  \boxed{ \sf{ \red{ \large{ v_{avg}  =    \dfrac{3uv \omega}{ \bigg(uv + v \omega + u \omega \bigg)}}}}}

Answered by Anonymous
15

 \underline{ \huge \boxed{ \bold{ \mathfrak{ \purple{Answer}}}}}

Given :

A body covers a total distance of 3s. The first s is covered with a velocity u the second s with v and the last s with \omega.

To Find :

Average velocity during the whole journey.

Formula :

 \:  \:  \:     \dag \:  \: \underline{ \boxed{ \bold{ \rm{ \pink{v_{av} =  \frac{total \: distance}{total \: time}}}}}}  \:  \:  \dag

Calculation :

 \implies \rm \: v_{av} =  \frac{3s}{ \frac{s}{u}  +  \frac{s}{v} +  \frac{s}{ \omega}  }  \:  \:   \: ( \because{t} =  \frac{distance}{velocity}) \\  \\  \therefore \rm \: v_{av} =  \frac{3s}{s( \frac{1}{u} +  \frac{1}{v}   +  \frac{1}{ \omega} )}  \\  \\  \therefore \rm \: v_{av} =  \frac{3}{ \frac{uv + v \omega +  u \omega}{uv \omega} }  \\  \\  \therefore   \:  \underline{ \boxed{ \bold{ \rm{ \orange{v{ \tiny{av}} =  \frac{3uv \omega}{uv + v \omega + u \omega}}}}}}  \:   \: \purple{ \clubsuit}

Short - trick :

let body covers 1/3 of total distance with velocity V1 another 1/3 distance with velocity V2 and final 1/3 distance with velocity V3 then average velocity is given by...

 \:  \:  \:  \:  \dag \:  \underline{ \boxed{ \bold{ \rm{ \blue{v{ \tiny{av}}  \orange=  \frac \red{3v{ \tiny{1}}v{ \tiny{2}}v{ \tiny{3}}} \green{v{ \tiny{1}}v{ \tiny{2}} + v{ \tiny{2}}v{ \tiny{3}} + v{ \tiny{1}}v{ \tiny{3}}} }}}}} \:  \dag

Similar questions