Physics, asked by aniket22sahy, 1 month ago

A body initially at rest travels a distance of 100 m in 5 see with a constant acceleration calculate i. Acceleration ii. Final velocity at end of 5sec.2​

Answers

Answered by SparklingBoy
119

 \large \dag Question :-

A body initially at rest travels a distance of 100 m in 5 sec with a constant acceleration calculate

(i) Acceleration

(ii) Final velocity at end of 5 sec.

 \large \dag Answer :-

\red\dashrightarrow\underline{\underline{\sf  \green{Acceleration   \:  is \:  8\: m/s^2 }} }\\

\red\dashrightarrow\underline{\underline{\sf  \green{Final\:Velocity   \:  is \:  40\: m/s}} }\\

 \large \dag Step by step Explanation :-

We Have 2nd Equation of Motion as :

Here We Have :

  • Initial Velocity = u = 0 m/s

  • Distance Covered = s = 100 m

  • Time Taken = t = 5 s

  • Let Acceleration be = a m/s²

  • Let Final Velocity be = v m/s

\large \bf \red\bigstar \: \: \orange{ \underbrace{ \underline{   \blue{ s = ut +  \frac{1}{2}  {at}^{2}  }}}} \\

Applying 2nd Equation of Motion ;

:\longmapsto \rm 100 = 0 \times t +  \frac{1}{2}  \times a \times  {t}^{2}  \\

:\longmapsto \rm 100 = 0 +  \frac{1}{2}  \times a \times 25 \\

:\longmapsto \rm 100 =  \frac{25a}{2}  \\

:\longmapsto \rm a = 100 \div  \frac{25}{2}  \\

:\longmapsto \rm a = 100 \times  \frac{2}{25}  \\

\purple{ \large :\longmapsto  \underline {\boxed{{\bf a = 8} }}}

Therefore,

\large\underline{\pink{\underline{\frak{\pmb{\text Acceleration = 8 \:  m/s^2 }}}}}

Now

We Have 1st Equation of Motion as :

\large \bf \red\bigstar \: \: \orange{ \underbrace{ \underline{   \blue{v =   u+ at  }}}} \\

Applying 1st Equation of Motion ;

:\longmapsto \rm v = 0 + 8 \times 5 \\

:\longmapsto \rm v = 0 + 40 \\

\purple{ \large :\longmapsto  \underline {\boxed{{\bf v = 40} }}}

Therefore,

\large\underline{\pink{\underline{\frak{\pmb{Final  \: \text Velocit  \text y = 40 \: m/s }}}}}

Answered by Atlas99
224

1. Acceleration

Using formula of 2nd eq. of motion

 \sf\large\red{\underline{\underline {\underline{s = ut +  \frac{1}{2}at^2}}}}\\

Where,

s is 100m

t is 5sec

u is 0m/s

On putting these values in the formula, we get,

\sf \implies \:  \: {100 = 0 \times t +  \frac{1}{2} \times a \times {t}^{2}} \\

\sf \implies \:  \: {100 = 0 +  \frac{1}{2} \times a \times  {5}^{2} } \\

\sf \implies\:\:{100 = 0 +  \frac{1}{2} \times a \times 25} \\

\sf \implies \:  \: {100 =  \frac{25}{2}a} \\

\sf \implies \:  \: {a = 100  \times \bigg(\frac{2}{25}\bigg)} \\

\sf \implies \:  \: {a =  \frac{100 \times 2}{25} =  {\frak{\red{\underline{\underline{8m/s^2}}}}}} \\

2. Final Velocity

Using formula of 3rd eq. of motion

 \sf\large\red{\underline{\underline {\underline{ {v}^{2} =  {u}^{2} + 2as}}}}

On putting values, we have,

\sf \implies \:  \: { {v}^{2} =  {0}^{2} + 2 \times 8 \times 100}

\sf \implies \:  \: { {v}^{2} = 0 + 2 \times 8 \times 100}

\sf \implies \:  \: { {v}^{2} = 1600}

\sf \large \red{\underline{\underline{\implies \:  \: { {v} = 40m/s}}}}

Similar questions