Physics, asked by qwert5818, 23 days ago

A body is freely falling. The displacement in the last second is equal to the displacement in the first three
seconds. What is the time of fall?

Answers

Answered by devanshu1234321
2

EXPLANATION:-

Using 2nd equation of motion:-

\sf\;s=ut+\frac{1}{2}at^2

u=0 m/s

t=3 s

a=10 m/s²

\sf\;s=\frac{1}{2}\times 10\times(3)^2\\\\s=5\times 9\\\\s=45\;m

Hence distance covered in first 3 second is 45 metres

Now let's calculate the distance in last second

We know that distance covered in last second:-

\sf\;S_{nth}=u+\frac{a}{2}(2n-1)\\\\u=0\\\\s_(nth)=5(2n-1)-------equation\; no-1

So in the question It is given that distance in first 3 second(45 ) = distance in last second[5(2n-1)]

A.T.Q

45=5(2n-1)

2n-1=9

2n=10

n=5

Total time 5+1

Total time =6 s

Hence the time of fall is 6 second

Answered by llTheUnkownStarll
2

Given:

  • Initial Velocity (u) = 0 m/s
  • Acceleration = g = 10 m/s²
  • Displacement in 3 seconds = Displacement in the last second

To Find:

  • Total time of free fall by the object.

Solution:

Using the Second Equation of motion we can calculate the displacement in the first 3 seconds. Hence we get,

 \begin{gathered}: \implies \sf  s = ut + 0.5 at² \\ : \implies \sf \: s = 0(3) + 0.5 × (10) × (3)² \\ : \implies \sf  s = 0 + 5 × 9 \\ : \implies  \boxed{\frak{ s = 45 m}}  \blue \bigstar\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \sf \Big\{ {eq}^{n} \: 1 \Big\}\end{gathered}

 \underline {\sf{Hence, the \:  displacement \:  covered  \: in \:  the \:  first  \: 3  \: seconds  \: is  \:  \textsf{ \textbf{45 m.}}}}

Now,

  • Let us assume the last second to be 't'.

We know that, the formula to calculate displacement traversed in a nth second is given as:

\boxed{ \frak { \color{navy}{s_n = u + \dfrac{1}{2} \times a \times (2n-1)}}} \red\bigstar

Substituting n=t and all the given information we get:

 : \implies \sf  s(t) = 0 + 0.5 × 10 × (2t - 1) \\ :\implies \sf \: s(t) = 5 ( 2t - 1 ) \\  : \implies\boxed{ \frak{ s(t) - 10t - 5}} \blue \bigstar     \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \sf\Big\{{eq}^{n} \: 2 \Big\}

According to the question, (i) is equal to (ii). Hence we get:

 \begin{gathered} : \implies \sf 45 = 10t - 5 \\: \implies \sf  45 + 5 = 10t \\ : \implies \sf50 = 10t \\ : \implies \sf \: t =  \frac{50}{10} \\ : \implies  \underline{\boxed{ \frak{ t = 5 \:  seconds}}}  \pink\bigstar\end{gathered}

 \underline {\sf{Hence, the \:  total  \: time  \: of \:  fall \:  is  \:   \textsf{\textbf{t}} \: \sf{which \:  is \:  \textsf{\textbf{5}}  \:  seconds.}}}

тнαηк үσυ

@itzshivani

Similar questions