Physics, asked by adritaghosh232k4, 8 months ago


A body is pivoted at a point. A force of 20N is applied at a distance of 30cm from the pivot. The moment of force about the pivot is

Answers

Answered by Anonymous
17

» To Find :

The Moment of Force .

» Given :

  • Force Applied = 20 N

  • Perpendicular Distance = 30 cm = 0.3 m

» We Know :

Formula Moment For Force :

\sf{\underline{\boxed{Torque(\tau) = Force \times Perpendicular\:Distance}}}

» Concept :

According to the question , we have to Find the Moment of Force or torque , so we can simply use the Formula for finding the moment of force.

» Solution :

Given :

  • Force Applied = 20 N
  • Perpendicular Distance = 30 cm = 0.3 m

Using the formula and substituting the values in it, we get :

\sf{\underline{\boxed{Torque(\tau) = Force \times Perpendicular\:Distance}}}

\sf{\Rightarrow \tau = 20 N \times 0.3 m}

\sf{\Rightarrow \tau = 20 N \times \dfrac{3}{10} m}

\sf{\Rightarrow \tau = \cancel{20} N \times \dfrac{3}{\cancel{10}} m}

\sf{\Rightarrow \tau = 2 N \times 3 m}

\sf{\Rightarrow \tau = 6 N\:m}

Hence ,the Moment of Force or Torque is 6 N m.

» Additional information :

  • Dimensional Formula of Work = \sf{[M^{1}L^{2}T^{-2}]}

  • Dimensional Formula of Weight = \sf{[M^{1}L^{1}T^{-2}]}

  • Dimensional Formula of Impulse = \sf{[M^{1}L^{1}T^{-1}]}

  • Dimensional Formula of Force = \sf{[M^{1}L^{1}T^{-2}]}
Answered by Anonymous
47

Given :-

  • Force Applied = 20 N
  • Perpendicular Distance = 30 cm = 0.3 m

To Find :-

We Know that,

\tt{\underline{\boxed{Torque(\tau) = Force \times Perpendicular\:Distance}}}

Solution :-

Using this formula,

\tt{\underline{\boxed{Torque(\tau) = Force \times Perpendicular\:Distance}}}

Put the values,

\tt{\implies \tau = 20 N \times 0.3 m}

\tt{\implies \tau = 20 N \times \dfrac{3}{10} m}

\tt{\implies \tau = \cancel{20} N \times \dfrac{3}{\cancel{10}} m}

\tt{\implies \tau = 2 N \times 3 m}

\tt{\implies \tau = 6 N\:m}

Hence, the Moment of Force or Torque is 6 N m.

Similar questions