A body is projected at an angle
alpha to the horizontal so as to clear two waves of equal height h at a distance 2 h from each other, the horizontal range of projectile is
A. 2h cos(a/2)
B. h/2 sin² a
C 2h sin(2a)
D. 2h cot(a/2)
Answers
Answer:
R_{min} = 2a cot(\frac{\alpha}{2})R
min
=2acot(
2
α
)
Explanation:
Correction : To prove : Minimum Range = 2a cot(\frac{\alpha}{2})2acot(
2
α
)
Let angle made by projectile on the wall from horizontal be u2 and angle from horizontal be \thetaθ as shown in figure.
Now , we know thatHorizontal component :
u_1 \cos(\alpha) = u_2 cos(\theta)u
1
cos(α)=u
2
cos(θ) .
Range from wall to wall :
2a = \frac{u_2^2sin(2\theta}{g}2a=
g
u
2
2
sin(2θ
Height :
a+\frac{u_2^2 sin^2(\theta)}{2g} =\frac{u_1^2 sin^2(\alpha)}{2g}a+
2g
u
2
2
sin
2
(θ)
=
2g
u
1
2
sin
2
(α)
Using above equations :
we get ,
u_1^2 - u_2^2 =u_2^2 sin(2\theta)u
1
2
−u
2
2
=u
2
2
sin(2θ)
=> \frac{u_1^2}{u_2^2}-1 = sin(2\theta)=>
u
2
2
u
1
2
−1=sin(2θ)
=>\frac{cos^2(\theta)}{cos^2(\alpha)}-1 = sin(2\theta)=>
cos
2
(α)
cos
2
(θ)
−1=sin(2θ)
=> cos(\alpha) = \frac{\cos(\theta)}{sin(\theta)+cos(\theta)}=>cos(α)=
sin(θ)+cos(θ)
cos(θ)
=> tan(\theta) = sec(\alpha) - 1=>tan(θ)=sec(α)−1
Now ,
Range (min) =\frac{u_1^2sin(2\alpha)}{g}Range(min)=
g
u
1
2
sin(2α)
Using equation of horizontal component and range from wall to wall to get :
Range (min) = \frac{2a tan(\alpha)}{tan(\theta)} Range(min)=
tan(θ)
2atan(α)
= 2a \frac{tan(\alpha)}{sec(\alpha) - 1 )}=2a
sec(α)−1)
tan(α)
= 2a cot(\frac{\alpha}{2})=2acot(
2
α
)