A body is projected at such an angle that horizontal
range is three times the greatest height. The angle
of projection is-
(1) 30° (2) 37° (3) 45° (4) 53°
Answers
Answer:
53°
4. option is correct .
Explanation:
Given :
Horizontal range R = 3 vertical height
We know :
R = u² sin 2 Ф / g
H = u² sin² Ф /2 g
= > u² sin 2 Ф / g = 3 ( u² sin² Ф / 2 g )
= > sin 2 Ф = 3 / 2 × sin² Ф
We know :
sin 2 Ф = 2 sin Ф cos Ф
= > 2 sin Ф cos Ф = 3 / 2 . sin Ф . sin Ф
= > 4 cos Ф = 3 sin Ф
= > sin Ф / cos Ф = 4 / 3
= > tan Ф = 4 / 3
= > Ф = tan⁻¹ ( 4 / 3 )
= > Ф = 53°
Hence we get answer.
Answer:
- The Angle of projection (θ) of the body is 53 °
Given:
- Range is three times the Maximum height
Explanation:
From the relation we know,
⇒ H_{max} = u² sin² θ / 2 g
Where,
- H_{max} Denotes maximum height.
- u Denotes Initial velocity.
- g Denotes Acceleration due to gravity.
- θ Denotes Angle.
Now,
⇒ H_{max} = u² sin² θ / 2 g
From the relation we know,
⇒ R = 2 u² sin 2θ / g
Where,
- Range Denotes Range.
- u Denotes Initial velocity.
- g Denotes Acceleration due to gravity.
- θ Denotes Angle.
Now,
⇒ R = u² sin 2θ / g
According to the question
⇒ R = 3 H_{max}
Substituting the values,
⇒ u² sin 2θ / g = 3 × ( u² sin² θ / 2 g )
⇒ u² sin 2θ / g = 3 u² sin² θ / 2 g
∵ [ sin 2θ = 2 sinθ cosθ ]
⇒ u² 2 sinθ cosθ / g = 3 u² sin² θ / 2 g
⇒ 2 sinθ cosθ = 3 sin² θ / 2
⇒ 3 sin² θ = 4 sinθ cosθ
⇒ 3 sin θ × sin θ = 4 sinθ cosθ
⇒ 3 sin θ = 4 cosθ
⇒ sin θ / cos θ = 4 / 3
⇒ tan θ = 4 / 3
⇒ θ = tan⁻¹ ( 4 / 3 )
⇒ θ = 53 °
⇒ θ = 53 °
∴ The Angle of projection (θ) of the body is 53 °.