Physics, asked by ragiraghava905, 4 months ago

A body is projected horizontally with a velocity of 20m/s from the top of a tower of height 490m.
The distance at which it falls from the top of the tower is​

Answers

Answered by Anonymous
127

 \sf{\underline{\underline{ \purple{ \large{Given:}}}}}

✰ Initial velocity in vertical direction ( uₓ ) = 0 m/s

✰ Initial velocity in horizontal direction ( uᵧ ) = 20 m/s

✰ Vertical height or distance ( h ) = 490 m

 \\ \\ \\  \sf{\underline{\underline{ \purple{ \large{To \: Find:}}}}}

✠ The distance at which body falls from the top of the tower i.e, horizontal distance ( S )

 \\ \\ \\ \sf{\underline{\underline{ \purple{ \large{Solution:}}}}} \\ \\

Let the vertical distance be h

ㅤㅤㅤㅤㅤ

Applying,

\\  \\  \sf{ \blue{ \large{ \underline{ \boxed{ \sf{h = u_{x}t +  \dfrac{1}{2} a {t}^{2} }}}}}} \\  \\

As the body is falling freely under the action of gravity,

 \sf{ \blue{ \large{ \underline{ \boxed{ \sf{h = u_{x}t +  \dfrac{1}{2} g {t}^{2} }}}}}} \\  \\

Put the values in,

 \implies  \tt{490 = (0)t +  \dfrac{1}{2}  \times 10 \times  {t}^{2} } \\  \\

\implies  \tt{490 = 0  \times t+  \dfrac{1}{2}  \times 10 \times  {t}^{2} } \\  \\

\implies  \tt{490 = 0  +  \dfrac{1}{2}  \times 10 \times  {t}^{2} } \\  \\

\implies  \tt{{t}^{2} =  \dfrac{2 \times 490}{10}     } \\  \\

\implies  \tt{{t}^{2} =  \dfrac{2 \times 49 \cancel0}{ 1\cancel0}     } \\  \\

\implies  \tt{{t}^{2} =  2 \times 49   } \\  \\

\implies  \tt{t =   \sqrt{ 2 \times 49 }  } \\  \\

\implies  \tt{t =  7 \sqrt{ 2  }  \: s } \\  \\  \\

Now for finding horizontal distance,

Applying,

\\  \\  \sf{ \blue{ \large{ \underline{ \boxed{ \sf{S = u_{y}t +  \dfrac{1}{2} a {t}^{2} }}}}}} \\  \\

  \\  \implies\tt{S = 20 \times 7 \sqrt{2}  +  \dfrac{1}{2}  \times 0 \times  {t}^{2}} \\  \\

\implies\tt{S = 20 \times 7 \sqrt{2}  } \\  \\

\implies\tt{S = 140 \sqrt{2}   } \\  \\

\implies\tt{S  \approx 197.99 \: m  } \\  \\ \\

 \sf{ \therefore The  \: distance \:  at \:  which  \: body \:  falls \:  from  \: the  \:  top \:  of \:  the \:  tower ( S ) \approx\sf{ \blue{ \large{ \underline{ \boxed{ \sf{197.99 \: m}}}}}}}

─━━━━━━━━━──━━━━━━━━━─

Attachments:
Similar questions