Physics, asked by maaazalitop, 1 year ago

A body is projected such that its kinetic energy at the top is (3/4)th of its initial kinetic

energy. What is the angle of projection with the horizontal?

(a) 300

(b) 600

(c)450

(d) 1200​

Answers

Answered by Anonymous
3

Solution :

Given:

✏ A body is projected such that its kinetic energy at the top is 3/4th of itsbinitial kinetic energy.

To Find:

✏ Angle of projection with horizontal

Formula derivation:

  • At initial point

 \bigstar \sf \: \red{ K_o =  \dfrac{1}{2}m {v}^{2} }

✏ v = initial velocity of projection

  • At highest point

 \bigstar \sf \:  \blue{K =  \dfrac{1}{2}m  {v}^{2} { \cos}^{2}\theta}  \\  \\  \because \sf \: at \: highest \: point \:  \green{v_x = v \cos \theta} \: and \: \purple{v_y = 0}

_________________________________

 \bigstar \:  \underline{ \boxed{ \bold{ \sf{ \pink{ \dfrac{K}{K_o} =  { \cos}^{2}  \theta}}}}} \:  \bigstar

Calculation:

 \mapsto \sf \:   \dfrac{3}{4} \dfrac{ \cancel{K_o}}{ \cancel{K_o}} =  { \cos}^{2}  \theta \\  \\  \mapsto \sf \:  \cos \theta =  \sqrt{ \dfrac{3}{4}} \\  \\  \mapsto \sf \:  \cos \theta =  \dfrac{ \sqrt{3}}{2} \\  \\  \mapsto \sf \:  \theta =  { \cos}^{ - 1}  \dfrac{ \sqrt{3} }{2}  \\  \\  \mapsto \:  \underline{ \boxed{ \bold{ \sf{ \gray{ \theta = 30 \degree}}}}} \:  \orange{ \bigstar}

Answered by shadowsabers03
2

\Large\boxed{\sf{\quad(a)\quad\!30^o\quad}}

Solution:-

We consider law of conservation of mechanical energy.

At the point of projection, kinetic energy exists but no potential energy.

  • \sf{K_1=\dfrac{1}{2}mu^2}

  • \sf{U_1=0}

And at the top, given that the kinetic energy of the body is \sf{\left(\dfrac{3}{4}\right)^{th}} of its kinetic energy. So,

  • \sf{K_2=\dfrac{3}{4}\,K_1}

The potential energy of the body at this point is, by energy conservation,

\longrightarrow\sf{K_1+U_1=K_2+U_2}

\longrightarrow\sf{K_1=\dfrac{3}{4}\,K_1+U_2}

\longrightarrow\sf{U_2=\dfrac{1}{4}\,K_1}

That is,

\longrightarrow\sf{mgh=\dfrac{1}{4}\cdot\dfrac{1}{2}\,mu^2}

\longrightarrow\sf{gh=\dfrac{1}{8}\,u^2}

\longrightarrow\sf{h=\dfrac{u^2}{8g}\quad\quad\dots(1)}

But \sf{h} is the maximum height.

\longrightarrow\sf{h=\dfrac{u^2\sin^2\theta}{2g}}

Thus (1) becomes,

\longrightarrow\sf{\dfrac{u^2\sin^2\theta}{2g}=\dfrac{u^2}{8g}}

\longrightarrow\sf{\sin^2\theta=\dfrac{1}{4}}

For acute angle \theta,

\longrightarrow\sf{\sin\theta=\dfrac{1}{2}}

Therefore,

\longrightarrow\sf{\underline{\underline{\theta=30^o}}}

Similar questions