Physics, asked by biplov208, 11 months ago

A body is projected upward with velocity 50m/s at angle 30 degree with the horizontal, so its velocity after 2 sec equal?

Answers

Answered by ShivamKashyap08
139

Answer:

  • Velocity (v) after 2 Seconds will be 43.5 m/s.

Given:

  1. Initial velocity (u) = 50 m/s.
  2. Time period (t) = 2 seconds.
  3. Angle of projection (θ) = 30°.

Explanation:

\rule{300}{1.5}

This is a Case of Projectile motion.

\boxed{\boxed{\setlength{\unitlength}{1 cm}\thicklines\begin{picture}(6.65,3.2) \put(0.3,1){\line(1,0){6}} \qbezier(0.3,1)(3,3)(6.3,1)\put(0.3,1){\vector(1,1){1}} \qbezier(0.5,1.2)(0.65,1,1)(0.6,1)\put(0.77,1.065){$\theta$}\put(0.5,1.8){u}\put(3.15,1.5){\vector(0,1){0.5}}\put(3.15,1.5){\vector(0,-1){0.5}}\put(3.3,1.4){H}\put(4.3,0.7){\vector(-1,0){4}}\put(4.3,0.7){\vector(1,0){2}}\put(3.3,0.3){R}\end{picture}}}

We Will solve this problem with Resolving the motion into Components.

Y - Direction:-

Applying First kinematic equation for Y - Direction.

\large\bigstar \: {\boxed{\tt v_y = u_y - gt}}

\bold{Here}\begin{cases}\tt{v_y} \text{ Denotes Final Velocity in Y - direction} \\ \tt{u_y} \text{ Denotes Initial velocity in Y - direction} \\ \text{g Denotes Acceleration due to gravity} \\ \text{t Denotes Time period}\end{cases}

Now,

\large{\boxed{\tt v_y = u_y - gt}}

\large{\tt \longmapsto v_y = u sin \theta - gt}

Substituting the values,

\large{\tt \longmapsto v_y = 50 \times sin 30 - 10 \times 2}

  • g = 10 m/s².
  • t = 2 seconds.
  • u = 50 m/s.

\large{\tt \longmapsto v_y = 50 \times \dfrac{1}{2} - 10 \times 2}

\large{\tt \longmapsto v_y =  \dfrac{50}{2} - 20}

\large{\tt \longmapsto v_y =  \cancel{\dfrac{50}{2}} - 20}

\large{\tt \longmapsto v_y =  25 - 20}

\large\longmapsto{\underline{\boxed{\tt v_y = 5 \: m/s}}}

\rule{300}{1.5}

\rule{300}{1.5}

X - Direction:-

Applying First kinematic equation for X - Direction.

\large\bigstar \: {\boxed{\tt v_x = u_x}}

\bold{Here}\begin{cases}\tt{v_x} \text{ Denotes Final Velocity in x - direction} \\ \tt{u_x} \text{ Denotes Initial velocity in x - direction}\end{cases}

Now,

\large{\boxed{\tt v_x = u_x}}

As the Value of g (Acceleration due to gravity) Remains Constant in X- Direction (Horizontally).

\large{\tt \longmapsto v_x = u cos \theta}

Therefore,

\large{\tt \longmapsto v_x = 50 \times cos 30}

\large{\tt \longmapsto v_x = 50 \times \dfrac{\sqrt{3}}{2}}

\large{\tt \longmapsto v_x = \dfrac{50 \sqrt{3}}{2}}

\large{\tt \longmapsto v_x = \cancel{\dfrac{50 \sqrt{3}}{2}}}

\large\longmapsto{\underline{\boxed{\tt v_x = 25 \sqrt{3} \: m/s}}}

\rule{300}{1.5}

\rule{300}{1.5}

For Final Velocity:-

\large\bigstar \: {\boxed{\tt v = \sqrt{(v_x)^2 + (v_y)^2}}}

Substituting the values,

\large{\tt \longmapsto v = \sqrt{(25 \sqrt{3})^2 + (5)^2}}

\large{\tt \longmapsto v = \sqrt{(625 \times 3) + 25}}

\large{\tt \longmapsto v = \sqrt{1875 + 25}}

\large{\tt \longmapsto v = \sqrt{1900}}

\large\longmapsto{\underline{\boxed{\red{\tt v = 43.5 \: m/s}}}}

Velocity (v) after 2 Seconds will be 43.5 m/s.

\rule{300}{1.5}


Sauron: Awesomeeee :0
ShivamKashyap08: Thank You! :)
Answered by Anonymous
129

\Huge{\underline{\underline{\mathfrak{Question \colon }}}}

A body is projected upward with velocity 50m/s at angle 30 degree with the horizontal, so it's velocity after 2s of projection is :

\Huge{\underline{\underline{\mathfrak{Answer \colon }}}}

From the Question,

  • Initial Velocity (u) = 50 m/s

  • Angle of Projection (∅) = 30°

  • Time Taken (t) = 2 s

\rule{300}{2}

Note

  • Velocity along the x - axis would be uniform throughout

  • Velocity along the y - axis is subjected to change

  • Velocity after 2s would be the magnitude of sum of both velocities

\boxed{\boxed{\setlength{\unitlength}{1 cm}\thicklines\begin{picture}(6.65,3.2) \put(0.3,1){\line(1,0){6}} \qbezier(0.3,1)(3,3)(6.3,1)\put(0.3,1){\vector(1,1){1}} \qbezier(0.5,1.2)(0.65,1,1)(0.6,1)\put(0.77,1.065){$\theta$}\put(0.5,1.8){u}\put(3.15,1.5){\vector(0,1){0.5}}\put(3.15,1.5){\vector(0,-1){0.5}}\put(3.3,1.4){H}\put(4.3,0.7){\vector(-1,0){4}}\put(4.3,0.7){\vector(1,0){2}}\put(3.3,0.3){R}\end{picture}}}

\rule{300}{2}

Along Y - Axis

 \large{ \boxed{ \boxed{ \tt{ {v}_{y}  =  {u}_{y}  + at }}}}

  • Velocity along y - axis is taken as u sin∅

  • Acceleration would be "- g"

Substituting the values,we get :

 \large{ \sf{ {v}_{y}  = u \: \times   \sin 30 - gt }} \\  \\  \large{ \hookrightarrow \:  \sf{ {v}_{y} } = 50 \times  \dfrac{1}{2} - 10 \times 2 } \\  \\  \large{ \hookrightarrow \:  \sf{ {v}_{y} = 25 - 20}} \\  \\  \large{ \hookrightarrow \:   \underline{ \boxed{\sf{ {v}_{y}  = 5 \:  {ms}^{ - 1} }}}}

\rule{300}{2}

Along X - Axis

  • Velocity along X - axis is taken as u cos∅

  • Acceleration would be zero,as velocity is uniform

Thus,

 \large{ \boxed{ \boxed{ \tt{ {v}_{x}  = u \:  \cos( \theta) }}}}

Putting the values,we get :

 \large{ \hookrightarrow \:  \sf{ {v}_{x} = 50 \times   \dfrac{ \sqrt{3} }{2}  }} \\  \\  \large{ \hookrightarrow \:   \underline{ \boxed{\sf{ {v}_{x}  = 25 \sqrt{3}  \: m {s}^{ - 1} }}}}

\rule{300}{2}

\rule{300}{2}

Now,

 \displaystyle { \large{ \sf{v =  \sqrt{ {{v}_{x}}{}^{2}  +  {v}_{y}{}^{2}  }}}} \\  \\   \displaystyle{ \large{\longrightarrow \:  \sf{v =  \sqrt{(25 \sqrt{3}) {}^{2}   +  {5}^{2} } }}} \\  \\  \displaystyle{ \large{ \longrightarrow \ \sf{v =  \sqrt{1900} }}} \\  \\  \displaystyle{ \large{ \longrightarrow \ \boxed{ \boxed{ \sf{v = 43.5 \: ms {}^{ - 1} }}}}}

The velocity of the particle after 2 seconds of projection would be 43.5 m/s

\rule{300}{2}

Similar questions