Physics, asked by vaiswarya733, 7 months ago

a body is projected upwards with velocity v 30 m / s at an angle 30 degree with horizontal determine the time of flight ? ( g = 10 m s ^2)​

Answers

Answered by Anonymous
6

Answer:

  • The time of flight of a body is 5.196 second.

Explanation:

Given that,

  • Velocity (u) = 30 m/s
  • Acceleration due to gravity (g) = 10 m/s²
  • Angle of projection (θ) = 90° - 30° = 60°

As we know that,

Time of flight, \:  \red \bigstar \boxed{\sf T =  \frac{2u \: sin\theta}{g}}

[ Putting values ]

 \sf \leadsto \: T =  \frac{2 \times 30 \times  \frac{ \sqrt{3} }{2} }{10}  \\  \\  \sf \leadsto \: T  =  \frac{60 \times   \frac{ \sqrt{3} }{2}  }{10}  \\  \\  \sf \leadsto \: T  =   \frac{6 \times  \frac{ \sqrt{3} }{2} }{1}  \\  \\  \sf \leadsto \: T  = 3 \sqrt{3}  \\  \\  \sf \leadsto \: T  = 3 \times 1.732 \\  \\  \sf \leadsto \: T  = 5.196 \: sec \:  \:  \green \bigstar

Answered by Mister360
6

Explanation:

Given:-

Velocity(u )=30m/s

Acceleration due to gravity =g=10m/s {}^{2}

Angle of projection ={\theta}=90-60=30°

To find:-

Time of flight

Solution:-

as we know that

{:}\longrightarrow{\boxed {T={\frac {2uSin {\theta}}{g}}}}

[by putting values]

{:}\longrightarrowT={\frac {2×30×{\frac {{\sqrt{3}}}{2}}}{10}}

{:}\longrightarrowT={\frac{{\cancel {60}}×{\frac {{\sqrt {3}}}{2}}}{{\cancel{10}}}}

{:}\longrightarrowT={\frac {{\cancel{6}}×{\frac {{\sqrt {3}}}{{\cancel{2}}}}}{1}}

{:}\longrightarrowT=3 {\sqrt {3}}

{:}\longrightarrowT=3×1.732

{:}\longrightarrow{\underline{\boxed{\bf {5.196sec}}}}

Similar questions