Physics, asked by jothikachidambaram, 10 months ago

A body is projected vertically upwards from the surface of a planet of mass M and radius R with upward speed square root of GM/R . The maximum height attained by the body is

Answers

Answered by shadowsabers03
5

Mass of the planet = M.

Radius of the planet = R.

Initial speed of the body projected, \sf{u=\sqrt{\dfrac{GM}{R}}.}

The value of acceleration due to gravity of the planet is,

  • \sf{g=\dfrac{GM}{R^2}\quad\quad\dots(1)}

But the value of \sf{g} varies with height \sf{h} from the surface of the planet as,

  • \sf{g'=g\left(1+\dfrac{h}{R}\right)^{-2}\quad\quad\dots(2)}

Let the body be at a distance \sf{h} from the surface of the planet.

From here, let the body allow to travel a small distance \sf{dh} outwards the planet. Then the velocity attained by it after moving this small distance is given by third equation of motion as,

\longrightarrow\sf{v^2=u^2-2g'\,dh}

From (2),

\longrightarrow\sf{v^2=u^2-2g\left(1+\dfrac{h}{R}\right)^{-2}\,dh}

At the maximum height, velocity of body becomes zero.

\longrightarrow\sf{v'=0}

But it's given by third equation of motion as,

\displaystyle\longrightarrow\sf{(v')^2=u^2-\int\limits_0^H2g\left(1+\dfrac{h}{R}\right)^{-2}\,dh}

\displaystyle\longrightarrow\sf{0=u^2-2g\int\limits_0^H\left(1+\dfrac{h}{R}\right)^{-2}\,dh}

\displaystyle\longrightarrow\sf{u^2=2g\int\limits_0^H\left(1+\dfrac{h}{R}\right)^{-2}\,dh}

\displaystyle\longrightarrow\sf{\dfrac{GM}{R}=2g\int\limits_0^H\left(1+\dfrac{h}{R}\right)^{-2}\,dh\quad\quad\dots(3)}

Let,

\longrightarrow\sf{u=1+\dfrac{h}{R}}

\longrightarrow\sf{\dfrac{du}{dh}=\dfrac{1}{R}}

\longrightarrow\sf{dh=R\ du}

For \sf{h=0,}

\displaystyle\longrightarrow\sf{u=1}

For \sf{h=H,}

\displaystyle\longrightarrow\sf{u=1+\dfrac{H}{R}}

Then (3) becomes,

\displaystyle\longrightarrow\sf{\dfrac{GM}{R}=2gR\int\limits_1^{1+\frac{H}{R}}\left u^{-2}\,du}

\displaystyle\longrightarrow\sf{\dfrac{GM}{R}=2gR\left[\dfrac{u^{-2+1}}{-2+1}\right]_1^{1+\frac{H}{R}}}

\displaystyle\longrightarrow\sf{\dfrac{GM}{R}=-2gR\left[\dfrac{1}{u}\right]_1^{1+\frac{H}{R}}}

\displaystyle\longrightarrow\sf{\dfrac{GM}{R}=-2gR\left[\dfrac{1}{\left(1+\dfrac{H}{R}\right)}-1\right]}

\displaystyle\longrightarrow\sf{\dfrac{GM}{R}=-2gR\left[\dfrac{1}{\left(\dfrac{R+H}{R}\right)}-1\right]}

\displaystyle\longrightarrow\sf{\dfrac{GM}{R}=-2gR\left[\dfrac{R}{R+H}-1\right]}

\displaystyle\longrightarrow\sf{\dfrac{GM}{R}=-2gR\left[\dfrac{R-R-H}{R+H}\right]}

\displaystyle\longrightarrow\sf{\dfrac{GM}{R}=2gR\left[\dfrac{H}{R+H}\right]}

\displaystyle\longrightarrow\sf{\dfrac{H}{R+H}=\dfrac{GM}{2gR^2}}

\displaystyle\longrightarrow\sf{\dfrac{H}{R+H}=\dfrac{1}{2g}\cdot\dfrac{GM}{R^2}}

From (1),

\displaystyle\longrightarrow\sf{\dfrac{H}{R+H}=\dfrac{1}{2g}\cdot g}

\displaystyle\longrightarrow\sf{\dfrac{H}{R+H}=\dfrac{1}{2}}

\displaystyle\longrightarrow\sf{2H=R+H}

\displaystyle\longrightarrow\underline{\underline{\sf{H=R}}}

Therefore, maximum height is equal to the radius of the planet R, measured from the planet surface.

Similar questions