Physics, asked by thoratsaumya, 6 months ago

a body is projected with a velocity of 30 m/s at an angle of 60 with horizontal find the mazimum height time of flight and the horizontal range​

Answers

Answered by Anonymous
71

Answer

Given :

  • Initial velocity \sf (u) = 30 m/s
  • Angle of projection \sf (\theta) = 60\degree
  • Acceleration \sf (g) = 10 m/s^2

To find :

  • Maximum height
  • Time of flight
  • Horizontal range

Solution :

\bf\red{Calculating\: \:Maximum \:height (H)}

\boxed{\sf{H = \frac{ {u}^{2}  {sin}^{2}\theta}{2g}}}

\implies\sf H =  \frac{ {30}^{2}  +{sin}^{2}60 \degree}{2g}

\implies\sf H =  \frac{900 +   {( \frac{1}{2}) }^{2}  }{2 \times 9.8}

\implies\sf H = \frac{900}{20}  \times  \frac{3}{5}

\implies\sf H = \frac{135}{4}

\implies\sf H = 33.75 m

\underline{\underline{\rm\purple{Maximum \: height = 33.75m}}}

\bf\red{Calculating \:Time\: of\: flight (T)}

\boxed{\sf{T = \frac{2u sin\theta}{g}}}

\implies\sf T =  \frac{2 \times 30 \times sin 60}{10}

\implies\sf T = 3 \sqrt{3} s

\implies\sf T = 5.196 s

\underline{\underline{\rm\purple{Time\: of \:flight = 5.196 s }}}

\bf\red{Calculating \:Horizontal \:Range (R)}

\boxed{\sf{R = \frac{ {u}^{2} sin2\theta}{g}}}

\implies\sf R = \frac{30 \times 30 \times 2 \: sin60 \degree \: cos60\degree}{10}

\implies\sf R = 45 \sqrt{3}

\implies\sf R = 77.94m

\underline{\underline{\rm\purple{Horizontal \:Range = 77.94 m}}}

Similar questions