Math, asked by Anonymous, 1 month ago

A body is projected with initial velocity of 40 m/s and at an angle of 30°with the horizontal. Calculate (i) time of flight and (i i) horizontal range of projectile.(assume g= 10 m/s²)​ reply me​

Answers

Answered by Sohan453
3

Answer:

Answer:

Given :-

A body is projected with initial velocity of 40 m/s and at an angle of 30° with the horizontal. (assume g = 10 m/s²).

To Find :-

Time of flight

Horizontal range of projectile.

Formula Used :-

\clubsuit♣ Time Taken :

\longmapsto\sf\boxed{\bold{\pink{Time\: taken\: (t) =\: \dfrac{2vsin\theta}{g}}}}⟼Timetaken(t)=g2vsinθ

\clubsuit♣ Horizontal range :

\longmapsto\sf\boxed{\bold{\pink{Horizontal\: range\: (R) =\: \dfrac{{v}^{2}sin2\theta}{g}}}}⟼Horizontalrange(R)=gv2sin2θ

where,

v = Velocity

g = Acceleration due to gravity

Solution :-

{\small{\bold{\purple{\underline{i)\: Time\: of\: flight\: :-}}}}}i)Timeofflight:−

Given :

Velocity = 40 m/s

Acceleration due to gravity = 10 m/s²

Angle of projection = 30°

According to the question by using the formula we get,

\begin{gathered}\implies \sf Time\: of\: flight =\: \dfrac{2 \times 40 \times sin30^{\circ}}{10}\\\end{gathered}⟹Timeofflight=102×40×sin30∘

As we know that, [ sin30° = 1/2 ]

\implies \sf Time\: of\: flight =\: \dfrac{\cancel{80} \times \dfrac{1}{\cancel{2}}}{10}⟹Timeofflight=1080×21

\begin{gathered}\implies \sf Time\: of\: flight =\: \dfrac{4\cancel{0}}{1\cancel{0}}\\\end{gathered}⟹Timeofflight=1040

\implies \sf Time\: of\: flight =\: \dfrac{4}{1}⟹Timeofflight=14

\implies\sf\bold{\red{Time\: of\: flight =\: 4\: seconds}}⟹Timeofflight=4seconds

\therefore∴ The time of flight is 4 seconds.

\rule{150}{2}

{\small{\bold{\purple{\underline{ii)\: Horizontal\: range\: of\: projectile\: :-}}}}}ii)Horizontalrangeofprojectile:−

Given :

Velocity = 40 m/s

Acceleration due to gravity = 10 m/s²

Angle of projection = 30°

According to the question by using the formula we get,

\begin{gathered}\implies \sf Horizontal\: Range =\: \dfrac{{(40)}^{2} \times sin2 \times 30^{\circ}}{10}\\\end{gathered}⟹HorizontalRange=10(40)2×sin2×30∘

\begin{gathered}\implies \sf Horizontal\: Range =\: \dfrac{1600 \times sin60^{\circ}}{10}\\\end{gathered}⟹HorizontalRange=101600×sin60∘

As we know that, [ sin60° = √3/2 ]

\implies \sf Horizontal\: Range\: =\: \dfrac{\cancel{1600} \times \dfrac{\sqrt{3}}{\cancel{2}}}{10}⟹HorizontalRange=101600×23

\implies \sf Horizontal\: Range =\: \dfrac{80\cancel{0} \times \sqrt{3}}{1\cancel{0}}⟹HorizontalRange=10800×3

\implies \sf Horizontal\: Range =\: \dfrac{80 \times \sqrt{3}}{1}⟹HorizontalRange=180×3

\implies \sf Horizontal\: Ran

Answered by bsnigdharani1983
2

Step-by-step explanation:

Correct option is

C

(a)141.4m

(b)20.41m

(c)2.041s

R.E.F image

u=40m/s

θ=30

g=9.81

Time of flight, T=

g

2usinθ

Maximum Height, H=

2g

u

2

sin

2

θ

Horizontal Range, R=

g

u

2

sin2θ

Time taken to reach the

max.height, t =

2

T

4=

2×9.8

(40)

2

(sin30

)

2

=20.408m

=20.41m

R=

9.8

(40)

2

sin2×30

=141.4m

t=

2

I

=

g

usin3θ

=2.041s

Ans =141.4m,20.41m,2.041s (C). this is your ans. I HOPE IT'S HELPFUL MARK ME BRAINLEST PLZ PLEASE THANK YOU

Similar questions