Physics, asked by missanaya55, 16 days ago

a body is thrown vertically upward with velocity of 98m/s find the max height attained by it the time taken to reach the starting -point

Answers

Answered by ItzHannu001
4

Given:-

 \\

 \\

  • Initial velocity= 98m/s (u)
  • Final velocity= 0m/s ( at maximum height velocity becomes 0, v)

 \\  \\

To Find:-

 \\  \\

  • Height of body
  • Time taken by body to reach at maximum height

 \\  \\

_______________

 \\

Since, body goes against gravity so we take negative acceleration due to gravity (— g)

 \\

_______________

 \\

 \sf{ \sf{Using \:  \:  Newton's \:  \:  1st  \:  \: law  \:  \: of \:  \:  gravitation}}

 \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  { \boxed{  \large\sf {\red {v = u + ( - g)t}}}}

 \\

Now Substituting the given values in formula,

 \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large \sf \implies0 = 98 - 9.8t \:  \:  \: (since g = 9.8m {s}^{ - 2}

 \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large \sf \implies - 98 =  - 9.8t

 \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large \sf \implies9.8t = 98

 \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large \sf \implies \: t =  \frac{98}{9.8}

 \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large \sf \implies \: \red{ t = 10s}

 \\

_____________________

 \\

Now we calculate the height

 \sf {Using \:  \:  Newton's \:   \: 2nd \:  \:  law  \:  \: of \:  gravitation}

 \\

 \large{ \boxed{ \red{ \sf{h = ut +  \frac{1}{2} ( - g) {t}^{2} }}}}

 \\

Now Substituting the given values in formula,

 \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \large \sf \implies h = 98 \times 10  +  \frac{1}{2}  \times ( - 9.8) \times  {10}^{2}

 \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \large \sf \implies h =980 + ( \frac{ - 49}{10} ) \times 100

 \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \large \sf \implies h =980 - 490

 \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \large \sf \implies  \red{h =490m}

Answered by tagorbisen
1

Answer:

\huge \pink{~} \red {A} \green {N} \blue {S} \orange {W} \pink {E} \red {R}

Given:-

\begin{gathered} \\ \end{gathered}

\begin{gathered} \\ \end{gathered}

Initial velocity= 98m/s (u)

Final velocity= 0m/s ( at maximum height velocity becomes 0, v)

\begin{gathered} \\ \\ \end{gathered}

To Find:-

\begin{gathered} \\ \\ \end{gathered}

Height of body

Time taken by body to reach at maximum height

\begin{gathered} \\ \\ \end{gathered}

_______________

\begin{gathered} \\ \end{gathered}

Since, body goes against gravity so we take negative acceleration due to gravity (— g)

\begin{gathered} \\ \end{gathered}

_______________

\begin{gathered} \\ \end{gathered}

\sf{ \sf{Using \: \: Newton's \: \: 1st \: \: law \: \: of \: \: gravitation}}UsingNewton

s1stlawofgravitation

\begin{gathered} \\ \end{gathered}

\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: { \boxed{ \large\sf {\red {v = u + ( - g)t}}}}

v=u+(−g)t

\begin{gathered} \\ \end{gathered}

Now Substituting the given values in formula,

\begin{gathered} \\ \end{gathered}

\: \: \: \: \: \: \: \: \: \: \: \: \large \sf \implies0 = 98 - 9.8t \: \: \: (since g = 9.8m {s}^{ - 2}⟹0=98−9.8t(sinceg=9.8ms

−2

\begin{gathered} \\ \end{gathered}

\: \: \: \: \: \: \: \: \: \: \: \: \large \sf \implies - 98 = - 9.8t⟹−98=−9.8t

\begin{gathered} \\ \end{gathered}

\: \: \: \: \: \: \: \: \: \: \: \: \large \sf \implies9.8t = 98⟹9.8t=98

\begin{gathered} \\ \end{gathered}

\: \: \: \: \: \: \: \: \: \: \: \: \large \sf \implies \: t = \frac{98}{9.8}⟹t=

9.8

98

\begin{gathered} \\ \end{gathered}

\: \: \: \: \: \: \: \: \: \: \: \: \large \sf \implies \: \red{ t = 10s}⟹t=10s

\begin{gathered} \\ \end{gathered}

_____________________

\begin{gathered} \\ \end{gathered}

Now we calculate the height

\sf {Using \: \: Newton's \: \: 2nd \: \: law \: \: of \: gravitation}UsingNewton

s2ndlawofgravitation

\begin{gathered} \\ \end{gathered}

\large{ \boxed{ \red{ \sf{h = ut + \frac{1}{2} ( - g) {t}^{2} }}}}

h=ut+

2

1

(−g)t

2

\begin{gathered} \\ \end{gathered}

Now Substituting the given values in formula,

\begin{gathered} \\ \end{gathered}

\: \: \: \: \: \: \: \: \: \: \large \sf \implies h = 98 \times 10 + \frac{1}{2} \times ( - 9.8) \times {10}^{2}⟹h=98×10+

2

1

×(−9.8)×10

2

\begin{gathered} \\ \end{gathered}

\: \: \: \: \: \: \: \: \: \: \large \sf \implies h =980 + ( \frac{ - 49}{10} ) \times 100⟹h=980+(

10

−49

)×100

\begin{gathered} \\ \end{gathered}

\: \: \: \: \: \: \: \: \: \: \large \sf \implies h =980 - 490⟹h=980−490

\begin{gathered} \\ \end{gathered}

\: \: \: \: \: \: \: \: \: \: \large \sf \implies \red{h =490m}⟹h=490m

Similar questions