a body is thrown vertically upward with velocity of 98m/s find the max height attained by it the time taken to reach the starting -point
Answers
Given:-
- Initial velocity= 98m/s (u)
- Final velocity= 0m/s ( at maximum height velocity becomes 0, v)
To Find:-
- Height of body
- Time taken by body to reach at maximum height
_______________
Since, body goes against gravity so we take negative acceleration due to gravity (— g)
_______________
Now Substituting the given values in formula,
_____________________
Now we calculate the height
Now Substituting the given values in formula,
Answer:
Given:-
\begin{gathered} \\ \end{gathered}
\begin{gathered} \\ \end{gathered}
Initial velocity= 98m/s (u)
Final velocity= 0m/s ( at maximum height velocity becomes 0, v)
\begin{gathered} \\ \\ \end{gathered}
To Find:-
\begin{gathered} \\ \\ \end{gathered}
Height of body
Time taken by body to reach at maximum height
\begin{gathered} \\ \\ \end{gathered}
_______________
\begin{gathered} \\ \end{gathered}
Since, body goes against gravity so we take negative acceleration due to gravity (— g)
\begin{gathered} \\ \end{gathered}
_______________
\begin{gathered} \\ \end{gathered}
\sf{ \sf{Using \: \: Newton's \: \: 1st \: \: law \: \: of \: \: gravitation}}UsingNewton
′
s1stlawofgravitation
\begin{gathered} \\ \end{gathered}
\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: { \boxed{ \large\sf {\red {v = u + ( - g)t}}}}
v=u+(−g)t
\begin{gathered} \\ \end{gathered}
Now Substituting the given values in formula,
\begin{gathered} \\ \end{gathered}
\: \: \: \: \: \: \: \: \: \: \: \: \large \sf \implies0 = 98 - 9.8t \: \: \: (since g = 9.8m {s}^{ - 2}⟹0=98−9.8t(sinceg=9.8ms
−2
\begin{gathered} \\ \end{gathered}
\: \: \: \: \: \: \: \: \: \: \: \: \large \sf \implies - 98 = - 9.8t⟹−98=−9.8t
\begin{gathered} \\ \end{gathered}
\: \: \: \: \: \: \: \: \: \: \: \: \large \sf \implies9.8t = 98⟹9.8t=98
\begin{gathered} \\ \end{gathered}
\: \: \: \: \: \: \: \: \: \: \: \: \large \sf \implies \: t = \frac{98}{9.8}⟹t=
9.8
98
\begin{gathered} \\ \end{gathered}
\: \: \: \: \: \: \: \: \: \: \: \: \large \sf \implies \: \red{ t = 10s}⟹t=10s
\begin{gathered} \\ \end{gathered}
_____________________
\begin{gathered} \\ \end{gathered}
Now we calculate the height
\sf {Using \: \: Newton's \: \: 2nd \: \: law \: \: of \: gravitation}UsingNewton
′
s2ndlawofgravitation
\begin{gathered} \\ \end{gathered}
\large{ \boxed{ \red{ \sf{h = ut + \frac{1}{2} ( - g) {t}^{2} }}}}
h=ut+
2
1
(−g)t
2
\begin{gathered} \\ \end{gathered}
Now Substituting the given values in formula,
\begin{gathered} \\ \end{gathered}
\: \: \: \: \: \: \: \: \: \: \large \sf \implies h = 98 \times 10 + \frac{1}{2} \times ( - 9.8) \times {10}^{2}⟹h=98×10+
2
1
×(−9.8)×10
2
\begin{gathered} \\ \end{gathered}
\: \: \: \: \: \: \: \: \: \: \large \sf \implies h =980 + ( \frac{ - 49}{10} ) \times 100⟹h=980+(
10
−49
)×100
\begin{gathered} \\ \end{gathered}
\: \: \: \: \: \: \: \: \: \: \large \sf \implies h =980 - 490⟹h=980−490
\begin{gathered} \\ \end{gathered}
\: \: \: \: \: \: \: \: \: \: \large \sf \implies \red{h =490m}⟹h=490m