Physics, asked by ishangupta897, 7 months ago

A body is thrown vertically upwards from the ground with velocity of 98 m/s. Calculate
(i) The maximum height reached
(ii) Time taken to reach the highest point.
(iii) Velocity at height of 196m from the point of projection.
(iv) Velocity with which it returns to the ground.
(v) Time taken to reach the ground (g =9.8m/s)​

Answers

Answered by Anonymous
16

Given:

\sf{A \ body \ thrown \ vertically \ upwards \ from}

\sf{ground \ with \ initial \ velocity (u) \ 98 \ m \ s^{-1}}

To find:

\sf{(i) \ The \ maximum \ height \ reached.}

\sf{(ii) \ The \ time \ taken \ to \ reach \ the \ highest}

\sf{point.}

\sf{(iii) \ Velocity \ at \ height \ 196 \ m \ from \ the}

\sf{point \ of \ projection.}

\sf{(iv) \ Velocity \ with \ which \ it \ returns \ to \ the}

\sf{ground.}

\sf{(v) \ Time \ taken \ to \ reach \ the \ ground.}

Calculation:

\sf{Note:}

\sf{For \ upward \ motion,}

\sf{(1) \ Final \ velocity (v)=0}

\sf{(2) \ Acceleration \ due \ to \ gravity (a)=-9.8 \ m \ s^{-2}}

\sf{For \ downward \ motion,}

\sf{(1) \ Initial \ velocity(u)=0}

\sf{(2) \ Acceleration \ due \ to \ gravity (a)=9.8 \ m \ s^{-2}}

____________________________________

\sf{(i)}

\sf{According \ to \ the \ third \ equation \ of \ motion.}

\boxed{\sf{v^{2}=u^{2}+2as}}

\sf{\therefore{0^{2}=98^{2}+2(-9.8)\times \ s}}

\sf{\therefore{s=5\times98}}

\sf{\therefore{s=490 \ m}}

\sf\purple{\tt{\therefore{The \ maximum \ height \ reached \ is \ 490 \ m}}}

_____________________________________

\sf{(ii)}

\sf{According \ to \ the \ first \ equation \ of \ motion.}

\boxed{\sf{v=u+at}}

\sf{0=98+(-9.8)\times \ t}

\sf{\therefore{t=\dfrac{98}{9.8}}}

\sf{\therefore{t=10 \ s}}

\sf\purple{\tt{\therefore{The \ time \ taken \ to \ reach \ the \ highest}}}

\sf\purple{\tt{point \ is \ 10 \ second.}}

_____________________________________

\sf{(iii)}

\sf{Note:}

\sf{Here, \ Final \ velocity \ will \ not \ be \ zero}

\sf{because \ body \ has \ not \ reached \ the}

\sf{maximum \ height.}

\sf{According \ to \ the \ third \ equation \ of \ motion}

\boxed{\sf{v^{2}=u^{2}+2as}}

\sf{\therefore{v^{2}=98^{2}+2(-9.8)(196)}}

\sf{\therefore{v^{2}=9604-3841.6}}

\sf{\therefore{v^{2}=5762.4}}

\sf{\therefore{v=75.9 \ m \ s^{-1} \ (approx)}}

\sf\purple{\tt{\therefore{The \ velocity \ at \ the \ height \ of \ 196 \ m}}}

\sf\purple{\tt{from \ projection \ is \ 75.9 \ m \ s^{-1}}}

____________________________________

\sf{(iv)}

\sf{According \ to \ the \ first \ equation \ of \ motion}

\boxed{\sf{v=u+at}}

\sf{\therefore{v=0+(9.8)(10)}}

\sf{\therefore{v=98 \ m \ s^{-1}}}

\sf\purple{\tt{\therefore{It \ returns \ with \ the \ velocity \ of}}}

\sf\purple{\tt{98 \ m \ s^{-1} \ to \ the \ ground.}}

____________________________________

\sf{(v)}

\sf{Note:}

\sf{Time \ taken \ to \ reach \ ground \ will \ be}

\sf{same \ as \ time \ taken \ to \ reach \ maximum}

\sf{height.}

\sf\purple{\tt{\therefore{It \ takes \ 10 \ second \ to \ reach \ the \ ground.}}}

Similar questions