Physics, asked by Praiseangel306, 6 months ago

A body is under the action of two vectors (forces) 7N & 10N. Find the resultant of the two forces if the forces are inclined at angle of 60degrees to each other

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
16

Given

  • A body is under the action of two vectors of 7N & 10N
  • The Forces are inclined with an Angle of 60°

To Find

  • The Resultant of these two forces

Solution

☯ Here we use the formula Resultant = {F² + F₂² + 2FF cosθ}

According to the given Question :

  • F₁ = 7N
  • F₂ = 10N
  • θ = 60°

━━━━━━━━━━━━━━━━━━

Substituting the values

→ Resultant = √{F₁² + F₂² + 2F₁F₂ cosθ}

→ R = √{7² + 10² + 2(7)(10) × cos 60°}

→ R = √{49 + 100 + 140 × cos 60°}

❲ cos 60° = ½ ❳

→ R = √{49 + 100 + 140 × ½}

→ R = √{149 + 70}

→ R = √219

→ Resultant = 14.79 N

∴ The Resultant force will be 14.79 N

Answered by Anonymous
5

Answer:

 \huge \bf \: answer

 \large { \boxed {\boxed { \sf{14.79 \: n}}}}

 \huge \bf \: explanation

 \sf √ \left({f1}^{2}  +  {f2}^{2}  + 2f1f2 \times \cos \theta\right)

 \sf \:   \sqrt{}( {f1}^{2}  +  {f2}^{2}  + 2(f1)(f2)  \times60 \degree)

 \sqrt{}({7}^{2}  +  {10}^{2}  + 2(7)(10) \times 60)

 \sqrt{} (49 + 100 + 140 \times 60)

Cos 60⁰ = ½

 \sf \sqrt{} (49 + 100 + 140 \times  \dfrac{1}{2} )

 \sf \:  \sqrt{}(149 + 70)

 \sf \:  \sqrt{} 219

 \huge \bf \: resultant \:  = 14.79 \: n

Similar questions