Physics, asked by wallymike333, 5 months ago

A body moves in a straight line with velocity v1 for 1/4th distance and remaining distance with
velocity V2. Find the average speed.​

Answers

Answered by Arceus02
9

Let the total distance be x.

Then,

For first part of the journey:

▪Displacement = (1/4)x = \sf \dfrac{x}{4}

▪And, velocity = \sf v_1

▪We know that, time = displacement/velocity

 \sf      \longrightarrow t_{1} =      \Bigg \{ \dfrac{       \:   \:  \Big( \dfrac{x}{4}    \Big)   \:  \: }{ v_{1} }   \Bigg \}

 \sf \longrightarrow t_{1} =  \dfrac{x }{4v_{1}}

\\

For second part of the journey:-

▪Remaining displacement = (Total distance) - (Displacement in first part) = x - (x/4)

Remaining displacement = \sf \dfrac{3x}{4}

▪Velocity = \sf v_2

▪We know that, time = displacement/velocity

 \sf      \longrightarrow t_{2} =      \Bigg \{ \dfrac{       \:   \:  \Big( \dfrac{3x}{4}    \Big)   \:  \: }{ v_{2} }   \Bigg \}

 \sf \longrightarrow t_{ 2 } =  \dfrac{3x  }{4v_{2}}

\\

Finding average speed:

We know that, average velocity = (Total displacement)/(Total time)

\sf average \: velocity = \dfrac{x}{t_1 + t_2}

  \sf \ average \: velocity=    \Bigg \{\dfrac{x}{ \bigg( \dfrac{x }{ 4 v_{1} } +  \dfrac{3x }{4v_{1} }  \bigg) }  \Bigg \}

  \sf \longrightarrow average \: velocity=    \Bigg \{\dfrac{ \cancel{x}}{  \cancel{x} \bigg( \dfrac{ 1 }{ 4v_{1}  } +  \dfrac{3 }{4v_{2}}  \bigg) }  \Bigg \}

  \sf \longrightarrow average \: velocity=    \Bigg \{\dfrac{ 1}{  \bigg( \dfrac{ 1 }{ 4v_{1}  } +  \dfrac{3 }{4v_{2}}  \bigg) }  \Bigg \}

  \sf \longrightarrow average \: velocity=    \Bigg \{\dfrac{ 1}{  \bigg( \dfrac{ v_{2} + 3 v_{1} }{ 4 v_1 v_2 }   \bigg) }  \Bigg \}

  \sf \longrightarrow average \: velocity =     \dfrac{4 v_1 v_2}{ 3v_{1} +  v_{2} }

\\

Hence the answer is,

 \longrightarrow \underline{ \underline{ \sf{ \green{ \dfrac{4 v_1 v_2}{ 3v_{1} +  v_{2} }  }}}}

Similar questions