Physics, asked by vipinusv, 9 months ago

a body moves over a horizontal surface with a velocity of 2 minute per second due to friction its velocity degrees uniformly at rate of 0.25 second squire how much time will it take to stop​

Answers

Answered by BrainlyConqueror0901
42

Correct question:-

A body moves over a horizontal surface with an initial velocity of 2 m/s. Due to friction, its velocity decreases uniformly at the rate of 0.25 m/s^{2}. How much time will it take to stop?

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Time\:taken=8\:sec}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt: \implies Initial \: speed = 2 \: m/s \\  \\  \tt:  \implies Acceleration =  - 0.25 \: m/ {s}^{2}  \\  \\  \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Time \: taken \: to \: stop \: body =?

• According to given question :

 \tt \circ \: Final \: speed = 0 \: m/s  \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies  v = u + at \\  \\ \tt:  \implies  0 = 2 + ( - 0.25) \times t \\  \\ \tt:  \implies   - 2 =  - 0.25t \\  \\ \tt:  \implies  t =  \frac{ - 2}{ - 0.25}  \\  \\  \green{\tt:  \implies  t = 8 \: sec}\\\\\ \blue{ \boxed{ \bold{Some \: related \: formula}}} \\ \orange{ \tt \circ\: \: s = ut +  \frac{1}{2} a {t}^{2} } \\  \\  \orange{ \tt \circ \:\:  {v}^{2}  =  {u}^{2}  + 2as} \\  \\ \orange{ \tt \circ \:\: Speed =  \frac{Distance}{Time} }

Answered by Anonymous
35

{ \huge{ \bold{ \underline{ \underline{ \green{Question:-}}}}}}

A body moves over a horizontal surface with a velocity of 2 minute per second. Due to friction its velocity degrees uniformly at rate of -0.25m/s² .. How much time will it take to stop ?

_______________

{ \huge{ \bold{ \underline{ \underline{ \orange{Answer:-}}}}}}

Given : -

  • Initial Velocity(u) = 2m/s
  • Acceleration(a) = -0.25m/s²
  • Final Speed(v) = 0m/s

To Find : -

  • Time(t) = ?

Formula Used : -

\leadsto\sf{{ \large{ \bold{ \bold{ \bold{ \red{v=u+at}}}}}}}

Now ,

{ \large{ \bold{ \underline{ \underline{ \purple{According\:to\:the\:Question:-}}}}}}

\dashrightarrow\sf{v=u+at}

\dashrightarrow\sf{0=2+(-0.25)\times{t}}

\dashrightarrow\sf{-2=-0.25t}

\dashrightarrow\sf{t=\cancel\dfrac{-2}{-0.25}}

\leadsto\sf{{ \large{ \boxed{ \bold{ \bold{ \green{t=8\:sec.}}}}}}}

⤳Therefore , time taken by the body to stop = 8 seconds ..

Similar questions