Physics, asked by noorwalia1903, 10 months ago

A body moves with velocity V= ln(x) where x is its position. The net force acting on the body is zero at x= ?​

Answers

Answered by Rohit18Bhadauria
21

Given:

Velocity of body= ln(x)

To Find:

The net force acting on the body is zero at x= 0

Solution:

We know that,

  • Velocity v of a body is given by

\pink{\boxed{\bf{v=\dfrac{ds}{dt}}}}

where,

s is the displacement of the body at time t

  • Acceleration a of a body is given by

\purple{\boxed{\bf{a=\dfrac{dv}{dt}}}}

where,

v is the velocity of the body at time t

  • \bf{\dfrac{d}{dx}(ln\:x)=\dfrac{1}{x}}
  • Force= mass × acceleration

\rule{190}{1}

Let the mass of body be 'm' and acceleration of body be 'a'

So,

\longrightarrow\rm{a=\dfrac{dv}{dt}}

On multiplying and dividing dx in R.H.S., we get

\longrightarrow\rm{a=\dfrac{dv}{dt}\times\dfrac{dx}{dx}}

\longrightarrow\rm{a=\dfrac{dv}{dx}\times\dfrac{dx}{dt}}

Here, \rm{\dfrac{dx}{dt}} is the velocity of given body

So,

\longrightarrow\rm{a=\red{\dfrac{d}{dx}(ln(x))}\times\orange{v}}

\longrightarrow\rm{a=\red{\dfrac{1}{x}}\times\orange{ln(x)}}

\longrightarrow\rm{a=\dfrac{ln(x)}{x}}

\rule{190}{1}

Le the net force acting on given body be F

So,

\longrightarrow\rm{F=ma}

\longrightarrow\rm{F=m\dfrac{ln(x)}{x}}

It is also given that F= 0

So,

\longrightarrow\rm{0=m\dfrac{ln(x)}{x}}

\longrightarrow\rm{m\dfrac{ln(x)}{x}=0}

\longrightarrow\rm{\dfrac{ln(x)}{x}=0}

\longrightarrow\rm{ln(x)=0}

\longrightarrow\rm{x=e^{0}}

\longrightarrow\rm\green{x=1}

Hence, the net force acting on the body is zero at x= 1.

Answered by puneethpeddeti
5

Answer:

X=1m

Explanation :

* V=lnx m/s (given)

* a=v dv/dx (lnx)

=> a = lnx d/dx (lnx)

* a=lnx/x

* Fnet = 0

=> a= 0

* lnx/x = 0

************** x = 1 ****************

Similar questions