Physics, asked by bindulavanya2512, 1 year ago

A body moving with a constant acceleration Travels the distances 3 metre and 8 metre respectively in 1 seconds and 2 seconds calculate the initial velocity and acceleration of the body ​

Answers

Answered by YameshPant
1

Answer:

s1= 3m

t1=1s

V1= s1/t1= 3m/s

s2= 8m

t2= 2s

V2=s2/t2=4m/s

therefore,u=3m/s,V=4m/s

a= ∆v/∆t

=4-3/2-1=1m/s²

Answered by Anonymous
7

Answer:-

a = 5 m/s²

u = 0.5 m/s

Given:-

Distance cover in 1s = 3m

Distance cover in 2s = 8m

To find:-

It's initial velocity and acceleration.

Solution:-

Let it's initial velocity be u and acceleration be a.

By using 4th equation of motion:-

\huge{\boxed{S_n =u +\dfrac{a}{2}(2n-1)}}

 \mathsf{S_1 = u + \dfrac{a}{2}(2\times 1 -1)}

 \mathsf{3 = u + \dfrac{a}{2}\times (2-1)}

 \mathsf{3 = u + \dfrac{a}{2}}

\mathsf{3 = \dfrac{2u + a}{2}}

 \mathsf{6 = 2u + a}-------1)

\mathsf{ S_2 = u + \dfrac{a}{2}(2n-1)}

 \mathsf{8 = u + \dfrac{a}{2}(2\times 2 -1)}

\mathsf{ 8 = u + \dfrac{a}{2}(4-1)}

 \mathsf{8 = u + \dfrac{a}{2}\times 3}

 \mathsf{8 = u + \dfrac{3a}{2}}

 \mathsf{8 = \dfrac{2u + 3a}{2}}

 \mathsf{16 = 2u + 3a}------2)

Subtract eq. 1 and 2.

 \mathsf{2u + a -2u -3a = 6-16}

 \mathsf{-2a = -10}

 \mathsf{a = \dfrac{-10}{-2}}

 \mathsf{a = 5 m/s^2}

Put the value of a in eq. 1

→2u + a = 6

→2u + 5 = 6

→2u = 6 - 5

→2u = 1

→u = 1/2

u = 0.5 m/s.

Similar questions