Physics, asked by jhansichandra77, 11 months ago

A body moving with an intially velocity of 5 m\s attains a velocity of 15 m\s in 3 s.then the displacement is​

Answers

Answered by shabaz1031
11

Answer:

\mathfrak{\huge{\underline{Answer:}}}

Explanation:

Given:

Initial velocity:[U]: 5m/s

Final velocity [V]: 15 m/s

time [t]:3 sec

V=U+at

15=5+a*3

15-5=3a

a=10/3

a=3.33 m/s²

To find displacement

V²=U²+2aS .......[S= displacement]

15²=5²+2*3.33*S

225-25=6.66S

S=200/6.66

S=30.3m

Answered by ShivamKashyap08
20

\huge{\bold{\underline{\underline{....Answer....}}}}

\huge{\bold{\underline{Given:-}}}

  • Initial velocity (u) = 5 m/s.
  • Final velocity (v) = 15 m/s.
  • Time taken (t) = 3 seconds.

\huge{\bold{\underline{Explanation:-}}}

Applying First kinematic equation,

\large{\boxed{ \tt v = u + at}}

Substituting the values,

\large{ \tt 15 = 5 + a \times 3}

Now,

\large{ \tt 15 - 5 = 3a}

\large{ \tt 10 = 3a}

\large{ \tt a = \dfrac{10}{3}}

\large{\boxed{\tt a = 3.333 \: m/s^2}}

Applying second kinematic equation,

\large{\boxed{\tt S = ut + \dfrac{1}{2}at^2}}

Substituting the values,

\large{\tt S = 5 \times 3 + \dfrac{1}{2} \times 3.333 \times (3)^2}

\large{\tt S = 15 + \dfrac{1}{2} \times 3.333 \times 9}

\large{\tt S = 15 + \dfrac{1}{2} \times 29.977}

\large{\tt S = 15 + 14.99}

\huge{\boxed{\boxed{\tt S = 29.99 \: m}}}

So, the displacement is 29.99 meters or approximately 30 meters.

Important formulas:-

  • \large{\tt v^2 - u^2 = 2as}
  • \large{ \tt S_n = u + \dfrac{a}{2}(2n - 1)}
  • \large{\tt v = u + at}
  • \large{\tt S = ut + \dfrac{1}{2}at^2}
Similar questions