Physics, asked by shweta1301, 3 months ago

A body of mass 0.2 kg performs linear S.H.M.
It experiences a restoring force of 0.2 N, when
its displacement from the mean position is 4
cm. Determine (i) force constant (ii) period of
S.H.M and (iii) acceleration of the body when the
displacement from the mean position is 1 cm.

Answers

Answered by kinsjackson
16

Answer:

Hope it helps you

Attachments:
Answered by AnkitaSahni
14

Given :

Mass (m) = 0.2 Kg

Restoring Force (F) = 0.2 N

To Find :

(i) force constant

(ii) period of S.H.M and

(iii) acceleration of the body when the displacement from the mean position is 1 cm.

Solution :

(i) We know, Force constant (K) = \frac{Force (F)}{Displacement (x)}

As F = 0.2 N and x = 4 cm = 4 × 10⁻² m. Therefore,

  Force Constant (K) =  \frac{0.2}{4 * 10^-^2}

                                  =  5 N/m

Hence, the force constant is 5 N/m.

(ii) We know,

  Angular Frequency (ω) = \sqrt{\frac{K}{m} }

                                         = \sqrt{\frac{5}{0.2} }

                                         = 5 rad/sec

∴ Time Period = \frac{2\pi }{w}

                        =\frac{2 * 3.14}{5}

                        = 1.256 sec

Hence, Time period is 1.256 seconds.

(iii) We know, Acceleration = ω²x

where, ω = Angular frequency and x = Displacement

As, ω = 5 and x = 1 cm = 0.01 m

Acceleration = ω²x

                     =  (5)² × 0.01

                     =  0.25 m/sec

Therefore, acceleration of the body is 0.25 m/sec

                                         

Similar questions